Suppr超能文献

使用脉冲电子顺磁共振波谱结合定点自旋标记技术探测(H3-H4)2 组蛋白四聚体结构。

Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling.

机构信息

Wellcome Trust Centre for Gene Regulation and Expression, Nucleic Acid Structure Research Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.

出版信息

Nucleic Acids Res. 2010 Jan;38(2):695-707. doi: 10.1093/nar/gkp1003. Epub 2009 Nov 13.

Abstract

The (H3-H4)(2) histone tetramer forms the central core of nucleosomes and, as such, plays a prominent role in assembly, disassembly and positioning of nucleosomes. Despite its fundamental role in chromatin, the tetramer has received little structural investigation. Here, through the use of pulsed electron-electron double resonance spectroscopy coupled with site-directed spin labelling, we survey the structure of the tetramer in solution. We find that tetramer is structurally more heterogeneous on its own than when sequestered in the octamer or nucleosome. In particular, while the central region including the H3-H3' interface retains a structure similar to that observed in nucleosomes, other regions such as the H3 alphaN helix display increased structural heterogeneity. Flexibility of the H3 alphaN helix in the free tetramer also illustrates the potential for post-translational modifications to alter the structure of this region and mediate interactions with histone chaperones. The approach described here promises to prove a powerful system for investigating the structure of additional assemblies of histones with other important factors in chromatin assembly/fluidity.

摘要

(H3-H4)(2)组蛋白四聚体构成核小体的核心,因此在核小体的组装、拆卸和定位中发挥着重要作用。尽管它在染色质中起着基本作用,但四聚体的结构研究却很少。在这里,我们通过使用脉冲电子-电子双共振光谱结合定点自旋标记,在溶液中研究了四聚体的结构。我们发现,四聚体本身的结构比封闭在八聚体或核小体中时更具异质性。特别是,虽然包括 H3-H3' 界面在内的中心区域保留了与核小体中观察到的相似的结构,但其他区域,如 H3αN 螺旋,显示出更高的结构异质性。在游离四聚体中 H3αN 螺旋的柔韧性也说明了翻译后修饰可能改变该区域的结构并介导与组蛋白伴侣的相互作用。这里描述的方法有望成为研究与染色质组装/流动性相关的其他组蛋白和其他重要因素的组装体结构的强大系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/660d/2810997/e9e770483319/gkp1003f1.jpg

相似文献

1
Probing the (H3-H4)2 histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling.
Nucleic Acids Res. 2010 Jan;38(2):695-707. doi: 10.1093/nar/gkp1003. Epub 2009 Nov 13.
2
Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106.
Nature. 2012 Feb 5;483(7387):104-7. doi: 10.1038/nature10861.
4
Folding mechanism of the (H3-H4)2 histone tetramer of the core nucleosome.
Protein Sci. 2004 May;13(5):1304-16. doi: 10.1110/ps.03535504.
5
Splitting of H3-H4 tetramers at transcriptionally active genes undergoing dynamic histone exchange.
Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1296-301. doi: 10.1073/pnas.1018308108. Epub 2011 Jan 10.
8
The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation.
Mol Cell. 2011 Feb 18;41(4):398-408. doi: 10.1016/j.molcel.2011.01.025.
9
Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4.
Nature. 2007 Mar 15;446(7133):338-41. doi: 10.1038/nature05613. Epub 2007 Feb 11.
10
Structures of human nucleosomes containing major histone H3 variants.
Acta Crystallogr D Biol Crystallogr. 2011 Jun;67(Pt 6):578-83. doi: 10.1107/S0907444911014818. Epub 2011 May 17.

引用本文的文献

1
Histone tetrasome dynamics affects chromatin transcription.
Nucleic Acids Res. 2025 Apr 22;53(8). doi: 10.1093/nar/gkaf356.
3
The Oligomerization Landscape of Histones.
Biophys J. 2019 May 21;116(10):1845-1855. doi: 10.1016/j.bpj.2019.03.021. Epub 2019 Apr 17.
5
Histone chaperone networks shaping chromatin function.
Nat Rev Mol Cell Biol. 2017 Mar;18(3):141-158. doi: 10.1038/nrm.2016.159. Epub 2017 Jan 5.
6
A Molecular Prospective for HIRA Complex Assembly and H3.3-Specific Histone Chaperone Function.
J Mol Biol. 2017 Jun 30;429(13):1924-1933. doi: 10.1016/j.jmb.2016.11.010. Epub 2016 Nov 19.
9
Chemical and biological tools for the preparation of modified histone proteins.
Top Curr Chem. 2015;363:193-226. doi: 10.1007/128_2015_629.
10
Histones: at the crossroads of peptide and protein chemistry.
Chem Rev. 2015 Mar 25;115(6):2296-349. doi: 10.1021/cr5003529. Epub 2014 Oct 20.

本文引用的文献

2
Mechanisms that specify promoter nucleosome location and identity.
Cell. 2009 May 1;137(3):445-58. doi: 10.1016/j.cell.2009.02.043.
3
Relative orientation of rigid nitroxides by PELDOR: beyond distance measurements in nucleic acids.
Angew Chem Int Ed Engl. 2009;48(18):3292-5. doi: 10.1002/anie.200805152.
4
Mutations to the histone H3 alpha N region selectively alter the outcome of ATP-dependent nucleosome-remodelling reactions.
Nucleic Acids Res. 2009 May;37(8):2504-13. doi: 10.1093/nar/gkp114. Epub 2009 Mar 5.
5
Nucleosomes can invade DNA territories occupied by their neighbors.
Nat Struct Mol Biol. 2009 Feb;16(2):151-8. doi: 10.1038/nsmb.1551. Epub 2009 Feb 1.
6
Long distance PELDOR measurements on the histone core particle.
J Am Chem Soc. 2009 Feb 4;131(4):1348-9. doi: 10.1021/ja807918f.
8
Molecular basis for the autoregulation of the protein acetyl transferase Rtt109.
Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12236-41. doi: 10.1073/pnas.0805813105. Epub 2008 Aug 21.
9
NMR structure of chaperone Chz1 complexed with histones H2A.Z-H2B.
Nat Struct Mol Biol. 2008 Aug;15(8):868-9. doi: 10.1038/nsmb.1465. Epub 2008 Jul 20.
10
Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46.
Structure. 2008 Jul;16(7):1077-85. doi: 10.1016/j.str.2008.05.006. Epub 2008 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验