Suppr超能文献

塑造染色质功能的组蛋白伴侣网络。

Histone chaperone networks shaping chromatin function.

作者信息

Hammond Colin M, Strømme Caroline B, Huang Hongda, Patel Dinshaw J, Groth Anja

机构信息

Biotech Research and Innovation Centre (BRIC) and Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.

Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.

出版信息

Nat Rev Mol Cell Biol. 2017 Mar;18(3):141-158. doi: 10.1038/nrm.2016.159. Epub 2017 Jan 5.

Abstract

The association of histones with specific chaperone complexes is important for their folding, oligomerization, post-translational modification, nuclear import, stability, assembly and genomic localization. In this way, the chaperoning of soluble histones is a key determinant of histone availability and fate, which affects all chromosomal processes, including gene expression, chromosome segregation and genome replication and repair. Here, we review the distinct structural and functional properties of the expanding network of histone chaperones. We emphasize how chaperones cooperate in the histone chaperone network and via co-chaperone complexes to match histone supply with demand, thereby promoting proper nucleosome assembly and maintaining epigenetic information by recycling modified histones evicted from chromatin.

摘要

组蛋白与特定伴侣蛋白复合物的结合对于其折叠、寡聚化、翻译后修饰、核输入、稳定性、组装及基因组定位至关重要。通过这种方式,可溶性组蛋白的伴侣作用是组蛋白可用性和命运的关键决定因素,它影响所有染色体过程,包括基因表达、染色体分离以及基因组复制和修复。在此,我们综述了不断扩展的组蛋白伴侣网络的独特结构和功能特性。我们强调了伴侣蛋白如何在组蛋白伴侣网络中以及通过共伴侣蛋白复合物进行协作,以使组蛋白的供应与需求相匹配,从而促进正确的核小体组装,并通过回收从染色质上驱逐的修饰组蛋白来维持表观遗传信息。

相似文献

1
Histone chaperone networks shaping chromatin function.
Nat Rev Mol Cell Biol. 2017 Mar;18(3):141-158. doi: 10.1038/nrm.2016.159. Epub 2017 Jan 5.
2
The right place at the right time: chaperoning core histone variants.
EMBO Rep. 2015 Nov;16(11):1454-66. doi: 10.15252/embr.201540840. Epub 2015 Oct 12.
3
The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation.
Mol Cell. 2011 Feb 18;41(4):398-408. doi: 10.1016/j.molcel.2011.01.025.
4
The histone chaperoning pathway: from ribosome to nucleosome.
Essays Biochem. 2019 Apr 23;63(1):29-43. doi: 10.1042/EBC20180055.
5
[Structure and function of histone chaperone FACT].
Mol Biol (Mosk). 2015 Nov-Dec;49(6):891-904. doi: 10.7868/S0026898415060026.
6
A common structural theme in histone chaperones mimics interhistone contacts.
Trends Biochem Sci. 2013 Jul;38(7):333-6. doi: 10.1016/j.tibs.2013.04.002.
7
Fly Fishing for Histones: Catch and Release by Histone Chaperone Intrinsically Disordered Regions and Acidic Stretches.
J Mol Biol. 2017 Aug 4;429(16):2401-2426. doi: 10.1016/j.jmb.2017.06.005. Epub 2017 Jun 10.
8
Interplay between histone variants and chaperones in plants.
Curr Opin Plant Biol. 2024 Aug;80:102551. doi: 10.1016/j.pbi.2024.102551. Epub 2024 May 21.
9
Histone chaperones in nucleosome assembly and human disease.
Nat Struct Mol Biol. 2013 Jan;20(1):14-22. doi: 10.1038/nsmb.2461.
10
Histone chaperones: assisting histone traffic and nucleosome dynamics.
Annu Rev Biochem. 2014;83:487-517. doi: 10.1146/annurev-biochem-060713-035536.

引用本文的文献

1
Daxx mediated histone H3.3 deposition on HSV-1 DNA restricts genome decompaction and the progression of immediate-early transcription.
PLoS Pathog. 2025 Aug 20;21(8):e1012501. doi: 10.1371/journal.ppat.1012501. eCollection 2025 Aug.
2
Designing Catalysts to Accelerate a Protein-Peptide Assembly-Reaction Cascade.
ACS Cent Sci. 2025 Jun 16;11(7):1166-1177. doi: 10.1021/acscentsci.5c00481. eCollection 2025 Jul 23.
3
PELP1 coordinates the modular assembly and enzymatic activity of the rixosome complex.
Sci Adv. 2025 Jul 25;11(30):eadw4603. doi: 10.1126/sciadv.adw4603.
4
PRMT5 activity sustains histone production to maintain genome integrity.
bioRxiv. 2025 Jul 7:2025.07.03.663002. doi: 10.1101/2025.07.03.663002.
5
A large C-terminal Rad52 segment acts as a chaperone to Form and Stabilize Rad51 Filaments.
Nat Commun. 2025 Jul 1;16(1):5589. doi: 10.1038/s41467-025-60664-x.
6
9
A novel high-throughput single-molecule technique DNA curtain: Applications for DNA metabolism.
Mol Cells. 2025 Jul;48(7):100224. doi: 10.1016/j.mocell.2025.100224. Epub 2025 May 20.
10
BRD4 regulates mA of ESPL1 mRNA interaction with ALKBH5 to modulate breast cancer progression.
Acta Pharm Sin B. 2025 Mar;15(3):1552-1570. doi: 10.1016/j.apsb.2024.12.037. Epub 2025 Jan 3.

本文引用的文献

2
H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex.
Nature. 2016 Jun 30;534(7609):714-718. doi: 10.1038/nature18312. Epub 2016 Jun 22.
4
Structural evidence for Nap1-dependent H2A-H2B deposition and nucleosome assembly.
EMBO J. 2016 Jul 1;35(13):1465-82. doi: 10.15252/embj.201694105. Epub 2016 May 25.
6
Molecular basis and specificity of H2A.Z-H2B recognition and deposition by the histone chaperone YL1.
Nat Struct Mol Biol. 2016 Apr;23(4):309-16. doi: 10.1038/nsmb.3189. Epub 2016 Mar 14.
7
Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1.
Nat Struct Mol Biol. 2016 Apr;23(4):317-23. doi: 10.1038/nsmb.3190. Epub 2016 Mar 14.
8
Integrated molecular mechanism directing nucleosome reorganization by human FACT.
Genes Dev. 2016 Mar 15;30(6):673-86. doi: 10.1101/gad.274183.115. Epub 2016 Mar 10.
9
Histone Chaperone Nap1 Is a Major Regulator of Histone H2A-H2B Dynamics at the Inducible GAL Locus.
Mol Cell Biol. 2016 Mar 31;36(8):1287-96. doi: 10.1128/MCB.00835-15. Print 2016 Apr.
10
The Histone Chaperone FACT Contributes to DNA Replication-Coupled Nucleosome Assembly.
Cell Rep. 2016 Feb 9;14(5):1128-1141. doi: 10.1016/j.celrep.2015.12.096. Epub 2016 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验