Young L H, McNulty P H, Morgan C, Deckelbaum L I, Zaret B L, Barrett E J
Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06510.
J Clin Invest. 1991 Feb;87(2):554-60. doi: 10.1172/JCI115030.
The regulation of protein metabolism in the human heart has not previously been studied. In 10 postabsorptive patients with coronary artery disease, heart protein synthesis and degradation were estimated simultaneously from the extraction of intravenously infused L-[ring-2,6-3H]phenylalanine (PHE) and the dilution of its specific activity across the heart at isotopic steady state. We subsequently examined the effect of branched chain amino acid (BCAA) infusion on heart protein turnover and on the myocardial balance of amino acids and branched chain ketoacids (BCKA) in these patients. In the postabsorptive state, there was a net release of phenylalanine (arterial-cardiac venous [PHE] = -1.71 +/- 0.32 nmol/ml, P less than 0.001; balance = -116 +/- 21 nmol PHE/min, P less than 0.001), reflecting protein degradation (142 +/- 40 nmol PHE/min) in excess of synthesis (24 +/- 42 nmol PHE/min) and net myocardial protein catabolism. During BCAA infusion, protein synthesis increased to equal the degradation rate (106 +/- 24 and 106 +/- 28 nmol PHE/min, respectively) and the phenylalanine balance shifted (P = 0.01) from negative to neutral (arterial-cardiac venous [PHE] = 0.07 +/- 0.36 nmol/ml; balance = 2 +/- 25 nmol PHE/min). BCAA infusion stimulated the myocardial uptake of both BCAA (P less than 0.005) and their ketoacid conjugates (P less than 0.001) in proportion to their circulating concentrations. Net uptake of the BCAA greatly exceeded that of other essential amino acids suggesting a role for BCAA and BCKA as metabolic fuels. Plasma insulin levels, cardiac double product, coronary blood flow, and myocardial oxygen consumption were unchanged. These results demonstrate that the myocardium of postabsorptive humans is in negative protein balance and indicate a primary anabolic effect of BCAA on the human heart.
此前尚未对人体心脏中蛋白质代谢的调节进行过研究。在10名处于吸收后状态的冠心病患者中,通过静脉输注L-[环-2,6-3H]苯丙氨酸(PHE)的摄取以及在同位素稳态下其比活性在心脏中的稀释情况,同时估算心脏蛋白质的合成和降解。随后,我们研究了支链氨基酸(BCAA)输注对这些患者心脏蛋白质周转以及心肌氨基酸和支链酮酸(BCKA)平衡的影响。在吸收后状态下,苯丙氨酸有净释放(动脉血-心脏静脉血[PHE]= -1.71±0.32 nmol/ml,P<0.001;平衡=-116±21 nmol PHE/分钟,P<0.001),这反映出蛋白质降解(142±40 nmol PHE/分钟)超过合成(24±42 nmol PHE/分钟),以及心肌蛋白质的净分解代谢。在输注BCAA期间,蛋白质合成增加至与降解速率相等(分别为106±24和106±28 nmol PHE/分钟),并且苯丙氨酸平衡从负值转变为中性(P = 0.01)(动脉血-心脏静脉血[PHE]= 0.07±0.36 nmol/ml;平衡= 2±25 nmol PHE/分钟)。BCAA输注刺激心肌对BCAA(P<0.005)及其酮酸共轭物(P<0.001)的摄取,摄取比例与它们的循环浓度成正比。BCAA的净摄取量大大超过其他必需氨基酸,表明BCAA和BCKA作为代谢燃料发挥作用。血浆胰岛素水平、心脏双乘积、冠状动脉血流量和心肌耗氧量均未改变。这些结果表明,处于吸收后状态的人体心肌处于负蛋白质平衡,并表明BCAA对人体心脏具有主要的合成代谢作用。