Suppr超能文献

一种高效的层次广义线性混合模型,用于定位作物品种中有序性状的 QTL。

An efficient hierarchical generalized linear mixed model for mapping QTL of ordinal traits in crop cultivars.

机构信息

Section on Statistical Genomics, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Department of Crop Genetics and Breeding, Nanjing Agricultural University, Nanjing, Jiangsu, China.

出版信息

PLoS One. 2013 Apr 2;8(4):e59541. doi: 10.1371/journal.pone.0059541. Print 2013.

Abstract

Many important phenotypic traits in plants are ordinal. However, relatively little is known about the methodologies for ordinal trait association studies. In this study, we proposed a hierarchical generalized linear mixed model for mapping quantitative trait locus (QTL) of ordinal traits in crop cultivars. In this model, all the main-effect QTL and QTL-by-environment interaction were treated as random, while population mean, environmental effect and population structure were fixed. In the estimation of parameters, the pseudo data normal approximation of likelihood function and empirical Bayes approach were adopted. A series of Monte Carlo simulation experiments were performed to confirm the reliability of new method. The result showed that new method works well with satisfactory statistical power and precision. The new method was also adopted to dissect the genetic basis of soybean alkaline-salt tolerance in 257 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 6 main-effect QTL and 3 QTL-by-environment interactions were identified.

摘要

许多植物的重要表型性状都是有序的。然而,对于有序性状关联研究的方法学,人们知之甚少。本研究提出了一种用于作物品种中有序性状数量性状位点(QTL)作图的层次广义线性混合模型。在该模型中,所有主效 QTL 和 QTL-环境互作均被视为随机效应,而群体均值、环境效应和群体结构则被视为固定效应。在参数估计中,采用似然函数的伪数据正态逼近和经验贝叶斯方法。通过一系列的蒙特卡罗模拟实验,验证了新方法的可靠性。结果表明,新方法具有令人满意的统计功效和精度。新方法还被用于通过分层随机抽样,从中国 6 个地理生态型中获得的 257 个大豆品种中,解析大豆耐碱性的遗传基础。结果鉴定出 6 个主效 QTL 和 3 个 QTL-环境互作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82d7/3614919/92ad674c7157/pone.0059541.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验