Suppr超能文献

简单神经元中的特征选择:脉冲动力学如何影响编码。

Feature selection in simple neurons: how coding depends on spiking dynamics.

机构信息

University of Washington, Department of Physics, Seattle, WA 98195-1560, USA.

出版信息

Neural Comput. 2010 Mar;22(3):581-98. doi: 10.1162/neco.2009.02-09-956.

Abstract

The relationship between a neuron's complex inputs and its spiking output defines the neuron's coding strategy. This is frequently and effectively modeled phenomenologically by one or more linear filters that extract the components of the stimulus that are relevant for triggering spikes and a nonlinear function that relates stimulus to firing probability. In many sensory systems, these two components of the coding strategy are found to adapt to changes in the statistics of the inputs in such a way as to improve information transmission. Here, we show for two simple neuron models how feature selectivity as captured by the spike-triggered average depends on both the parameters of the model and the statistical characteristics of the input.

摘要

神经元复杂输入与其爆发输出之间的关系定义了神经元的编码策略。这种关系通常可以通过一个或多个线性滤波器有效地进行经验建模,这些滤波器可以提取与触发爆发相关的刺激成分,以及一个将刺激与爆发概率相关联的非线性函数。在许多感觉系统中,编码策略的这两个组成部分被发现能够适应输入统计数据的变化,从而改善信息传递。在这里,我们展示了两个简单的神经元模型,说明了由爆发触发平均捕获的特征选择性如何取决于模型的参数和输入的统计特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验