Das Anindita, Rathour Rahul K, Narayanan Rishikesh
Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science Bangalore, India.
Center for Learning and Memory, The University of Texas at Austin Austin, TX, USA.
Front Cell Neurosci. 2017 Mar 13;11:72. doi: 10.3389/fncel.2017.00072. eCollection 2017.
Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.
小提琴上的琴弦经过调音,以一种完全取决于手指在指板上位置的方式产生不同的声音频率。不同小提琴发出的声音频率可能因其结构、琴弦性质及其调音方式而有很大差异。类似地,活跃的神经元树突,即具有活跃通道电导的树突,以一种取决于突触输入在树突上位置的方式被调谐到不同的输入频率。此外,不同的通道表达谱和形态特征的差异可能导致同一亚型的不同神经元上的树突被调谐到不同的频率范围。或者,通过通道谱和形态特征的不同组合,可以在树突结构上实现类似的位置依赖性,从而导致活跃树突频谱调谐的简并性。就像小提琴上的琴弦被调谐到与中提琴或大提琴不同的频率一样,不同的神经元亚型表现出不同的通道谱和不同的形态特征,赋予每个神经元亚型独特的位置依赖性频率选择性。最后,类似于乐器可调节以发出不同的位置依赖性声音,神经元频率选择性及其位置依赖性可通过离子通道和形态的活动依赖性可塑性来调节。在这篇文章中,我们探讨了神经元频率选择性的起源,并综述了关于不同形式频率调谐中位置依赖性出现背后机制的文献。作为这篇文章的结尾,我们提出了一些未来的方向,以促进这种赋予神经元频率复用能力的生物物理机制的令人兴奋的融合。