Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
Genet Epidemiol. 2009;33 Suppl 1(Suppl 1):S29-32. doi: 10.1002/gepi.20469.
Genome-wide association studies employ hundreds of thousands of statistical tests to determine which regions of the genome may likely harbor disease-causing alleles. Such large-scale testing simultaneously requires stringent control over type I error and maintenance of sufficient power to detect true associations. These contradictory goals have led some researchers beyond Bonferroni correction of P-values to an exploration of methods to improve the detection of a few true effects in the presence of many unassociated loci. This article reviews how Genetic Analysis Workshop 16 Group 5 investigators proposed to adjust for multiple tests while simultaneously using information about the structure of the genome to improve the detection of true positives.
全基因组关联研究采用数十万项统计检验来确定基因组的哪些区域可能含有致病等位基因。这种大规模的测试同时需要严格控制第一类错误,并保持足够的能力来检测真正的关联。这些相互矛盾的目标促使一些研究人员超越了对 P 值的 Bonferroni 校正,探索了在存在许多不相关的基因座的情况下提高检测少数真实效应的方法。本文回顾了遗传分析研讨会 16 组 5 名研究人员如何提出在同时使用关于基因组结构的信息来提高真阳性检测的情况下调整多重检验。