Suppr超能文献

基于基因或区域的全基因组关联研究分析。

Gene- or region-based analysis of genome-wide association studies.

机构信息

Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

出版信息

Genet Epidemiol. 2009;33 Suppl 1(Suppl 1):S105-10. doi: 10.1002/gepi.20481.

Abstract

With rapid advances in genotyping technologies in recent years and the growing number of available markers, genome-wide association studies are emerging as promising approaches for the study of complex diseases and traits. However, there are several challenges with analysis and interpretation of such data. First, there is a massive multiple testing problem, due to the large number of markers that need to be analyzed, leading to an increased risk of false positives and decreased ability for association studies to detect truly associated markers. In particular, the ability to detect modest genetic effects can be severely compromised. Second, a genetic association of a given single-nucleotide polymorphism as determined by univariate statistical analyses does not typically explain biologically interesting features, and often requires subsequent interpretation using a higher unit, such as a gene or region, for example, as defined by haplotype blocks. Third, missing genotypes in the data set and other data quality issues can pose challenges when comparisons across platforms and replications are planned. Finally, depending on the type of univariate analysis, computational burden can arise as the number of markers continues to grow into the millions. One way to deal with these and related challenges is to consider higher units for the analysis, such as genes or regions. This article summarizes analytical methods and strategies that have been proposed and applied by Group 16 to two genome-wide association data sets made available through the Genetic Analysis Workshop 16.

摘要

近年来,基因分型技术取得了快速发展,可用的标记物数量也越来越多,全基因组关联研究作为研究复杂疾病和特征的一种有前途的方法正在兴起。然而,对这类数据进行分析和解释存在一些挑战。首先,由于需要分析的标记物数量巨大,因此存在大量的多重测试问题,这会导致假阳性的风险增加,关联研究检测真正相关标记物的能力下降。特别是,检测适度遗传效应的能力可能会受到严重影响。其次,单变量统计分析确定的给定单核苷酸多态性的遗传关联通常不能解释生物学上有趣的特征,并且通常需要使用更高的单位(例如基因或区域)进行后续解释,例如由单倍型块定义的单位。第三,在计划跨平台和复制比较时,数据集中的缺失基因型和其他数据质量问题会带来挑战。最后,根据单变量分析的类型,随着标记物数量持续增长到数百万,计算负担可能会增加。处理这些和相关挑战的一种方法是考虑更高的分析单位,例如基因或区域。本文总结了第 16 组提出并应用于通过遗传分析研讨会 16 提供的两个全基因组关联数据集的分析方法和策略。

相似文献

3
9
Genome-wide association studies for discrete traits.全基因组关联研究离散性状。
Genet Epidemiol. 2009;33 Suppl 1(Suppl 1):S8-12. doi: 10.1002/gepi.20465.

引用本文的文献

6
Contribution of large region joint associations to complex traits genetics.大区域联合关联对复杂性状遗传学的贡献。
PLoS Genet. 2015 Apr 9;11(4):e1005103. doi: 10.1371/journal.pgen.1005103. eCollection 2015 Apr.
8
FFBSKAT: fast family-based sequence kernel association test.FFBSKAT:基于家系的快速序列核关联检验
PLoS One. 2014 Jun 6;9(6):e99407. doi: 10.1371/journal.pone.0099407. eCollection 2014.

本文引用的文献

1
Genome-wide gene-based association study.
BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S135. doi: 10.1186/1753-6561-3-s7-s135.
3
Copy number variation in the Framingham Heart Study.弗雷明汉心脏研究中的拷贝数变异
BMC Proc. 2009 Dec 15;3 Suppl 7(Suppl 7):S133. doi: 10.1186/1753-6561-3-s7-s133.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验