Suppr超能文献

IMPST:一种用于乳腺MRI中可疑病变分割的新型交互式自我训练方法。

IMPST: A New Interactive Self-Training Approach to Segmentation Suspicious Lesions in Breast MRI.

作者信息

Azmi Reza, Norozi Narges, Anbiaee Robab, Salehi Leila, Amirzadi Azardokht

机构信息

Faculty of Engineering and Technology, Alzahra University, Tehran, Iran.

出版信息

J Med Signals Sens. 2011 May;1(2):138-48.

Abstract

Breast lesion segmentation in magnetic resonance (MR) images is one of the most important parts of clinical diagnostic tools. Pixel classification methods have been frequently used in image segmentation with two supervised and unsupervised approaches up to now. Supervised segmentation methods lead to high accuracy, but they need a large amount of labeled data, which is hard, expensive, and slow to be obtained. On the other hand, unsupervised segmentation methods need no prior knowledge and lead to low performance. However, semi-supervised learning which uses not only a few labeled data, but also a large amount of unlabeled data promises higher accuracy with less effort. In this paper, we propose a new interactive semi-supervised approach to segmentation of suspicious lesions in breast MRI. Using a suitable classifier in this approach has an important role in its performance; in this paper, we present a semi-supervised algorithm improved self-training (IMPST) which is an improved version of self-training method and increase segmentation accuracy. Experimental results show that performance of segmentation in this approach is higher than supervised and unsupervised methods such as K nearest neighbors, Bayesian, Support Vector Machine, and Fuzzy c-Means.

摘要

磁共振(MR)图像中的乳腺病变分割是临床诊断工具的重要组成部分之一。像素分类方法在图像分割中经常被使用,目前有监督和无监督两种方法。有监督分割方法准确率高,但需要大量的标注数据,获取这些数据困难、昂贵且耗时。另一方面,无监督分割方法不需要先验知识,但性能较低。然而,半监督学习不仅使用少量标注数据,还使用大量未标注数据,有望以较少的工作量获得更高的准确率。在本文中,我们提出了一种新的交互式半监督方法来分割乳腺MRI中的可疑病变。在这种方法中使用合适的分类器对其性能起着重要作用;在本文中,我们提出了一种改进的半监督算法——改进自训练(IMPST),它是自训练方法的改进版本,提高了分割准确率。实验结果表明,这种方法的分割性能高于有监督和无监督方法,如K近邻、贝叶斯、支持向量机和模糊c均值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40bf/3342621/ef3ba8fe30b1/JMSS-1-138-g001.jpg

相似文献

3
A Semi-Supervised Method for Tumor Segmentation in Mammogram Images.
J Med Signals Sens. 2020 Feb 6;10(1):12-18. doi: 10.4103/jmss.JMSS_62_18. eCollection 2020 Jan-Mar.
4
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
Med Image Anal. 2023 Jul;87:102792. doi: 10.1016/j.media.2023.102792. Epub 2023 Mar 11.
5
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
Comput Methods Programs Biomed. 2022 Nov;226:107099. doi: 10.1016/j.cmpb.2022.107099. Epub 2022 Sep 2.
8
MDT: semi-supervised medical image segmentation with mixup-decoupling training.
Phys Med Biol. 2024 Mar 13;69(6). doi: 10.1088/1361-6560/ad2715.
9
MTANS: Multi-Scale Mean Teacher Combined Adversarial Network with Shape-Aware Embedding for Semi-Supervised Brain Lesion Segmentation.
Neuroimage. 2021 Dec 1;244:118568. doi: 10.1016/j.neuroimage.2021.118568. Epub 2021 Sep 8.

引用本文的文献

1
A Semi-Supervised Method for Tumor Segmentation in Mammogram Images.
J Med Signals Sens. 2020 Feb 6;10(1):12-18. doi: 10.4103/jmss.JMSS_62_18. eCollection 2020 Jan-Mar.
2
Levels Propagation Approach to Image Segmentation: Application to Breast MR Images.
J Digit Imaging. 2019 Jun;32(3):433-449. doi: 10.1007/s10278-018-00171-2.
3
Automatic and fast segmentation of breast region-of-interest (ROI) and density in MRIs.
Heliyon. 2018 Dec 17;4(12):e01042. doi: 10.1016/j.heliyon.2018.e01042. eCollection 2018 Dec.

本文引用的文献

1
Semi-supervised pattern classification of medical images: application to mild cognitive impairment (MCI).
Neuroimage. 2011 Apr 1;55(3):1109-19. doi: 10.1016/j.neuroimage.2010.12.066. Epub 2010 Dec 31.
2
A review of automatic mass detection and segmentation in mammographic images.
Med Image Anal. 2010 Apr;14(2):87-110. doi: 10.1016/j.media.2009.12.005. Epub 2009 Dec 29.
4
Edge intensity normalization as a bias field correction during balloon snake segmentation of breast MRI.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3040-3. doi: 10.1109/IEMBS.2008.4649844.
6
Diagnostic breast MR imaging: current status and future directions.
Radiol Clin North Am. 2007 Sep;45(5):863-80, vii. doi: 10.1016/j.rcl.2007.07.002.
7
Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching.
Comput Biol Med. 2008 Jan;38(1):116-26. doi: 10.1016/j.compbiomed.2007.08.001. Epub 2007 Sep 12.
8
A concentric morphology model for the detection of masses in mammography.
IEEE Trans Med Imaging. 2007 Jun;26(6):880-9. doi: 10.1109/TMI.2007.895460.
9
Cancer screening in the United States, 2007: a review of current guidelines, practices, and prospects.
CA Cancer J Clin. 2007 Mar-Apr;57(2):90-104. doi: 10.3322/canjclin.57.2.90.
10
American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography.
CA Cancer J Clin. 2007 Mar-Apr;57(2):75-89. doi: 10.3322/canjclin.57.2.75.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验