Suppr超能文献

体层摄影术剂量分布函数:一项蒙特卡罗研究。

Dose spread functions in computed tomography: a Monte Carlo study.

机构信息

Department of Radiology, University of California, Davis Medical Center 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817, USA.

出版信息

Med Phys. 2009 Oct;36(10):4547-54. doi: 10.1118/1.3223634.

Abstract

PURPOSE

Current CT dosimetry employing CTDI methodology has come under fire in recent years, partially in response to the increasing width of collimated x-ray fields in modern CT scanners. This study was conducted to provide a better understanding of the radiation dose distributions in CT.

METHODS

Monte Carlo simulations were used to evaluate radiation dose distributions along the z axis arising from CT imaging in cylindrical phantoms. Mathematical cylinders were simulated with compositions of water, polymethyl methacrylate (PMMA), and polyethylene. Cylinder diameters from 10 to 50 cm were studied. X-ray spectra typical of several CT manufacturers (80, 100, 120, and 140 kVp) were used. In addition to no bow tie filter, the head and body bow tie filters from modern General Electric and Siemens CT scanners were evaluated. Each cylinder was divided into three concentric regions of equal volume such that the energy deposited is proportional to dose for each region. Two additional dose assessment regions, central and edge locations 10 mm in diameter, were included for comparisons to CTDI100 measurements. Dose spread functions (DSFs) were computed for a wide number of imaging parameters.

RESULTS

DSFs generally exhibit a biexponential falloff from the z=0 position. For a very narrow primary beam input (<< 1 mm), DSFs demonstrated significant low amplitude long range scatter dose tails. For body imaging conditions (30 cm diameter in water), the DSF at the center showed 160 mm at full width at tenth maximum (FWTM), while at the edge the FWTM was approximately 80 mm. Polyethylene phantoms exhibited wider DSFs than PMMA or water, as did higher tube voltages in any material. The FWTM were 80, 180, and 250 mm for 10, 30, and 50 cm phantom diameters, respectively, at the center in water at 120 kVp with a typical body bow tie filter. Scatter to primary dose ratios (SPRs) increased with phantom diameter from 4 at the center (1 cm diameter) for a 16 cm diameter cylinder to approximately 12.5 for a 32 cm diameter cylinder. The SPRs increased dramatically at the center of the phantom compared to the edge. For the three equal area regions, the edge to center SPRs for a 32 cm diameter phantom were approximately 1.8, 3.5, and 6.3, respectively.

CONCLUSIONS

DSFs demonstrate low amplitude long ranging tails which reach considerable distances in cylindrical phantoms. The buildup that results from these long-ranged tails increases at the center of the field (at z=0) with increasing scan length. The DSF distributions lend a better understanding of the trends in CT dose deposition over a range of relevant imaging parameters. The DSFs as well as other related data are available to interested parties using EPAPS at http://www.aip.org/pubservs/epaps.html.

摘要

目的

近年来,由于现代 CT 扫描仪中准直 X 射线束的宽度不断增加,当前采用 CTDI 方法的 CT 剂量学受到了一定程度的质疑。本研究旨在更好地了解 CT 中的辐射剂量分布。

方法

使用蒙特卡罗模拟来评估圆柱模型中的 CT 成像引起的 z 轴上的辐射剂量分布。模拟了具有水、聚甲基丙烯酸甲酯(PMMA)和聚乙烯组成的数学圆柱。研究了直径为 10 至 50 cm 的圆柱。使用了几种 CT 制造商的典型 X 射线谱(80、100、120 和 140 kVp)。除了没有蝴蝶结滤波器外,还评估了现代通用电气和西门子 CT 扫描仪的头部和体部蝴蝶结滤波器。每个圆柱被分成三个等体积的同心区域,使得每个区域的能量沉积与剂量成正比。为了与 CTDI100 测量进行比较,还包括了两个额外的剂量评估区域,中央和边缘位置,直径为 10 mm。计算了大量成像参数的剂量传播函数(DSF)。

结果

DSF 通常表现出从 z=0 位置的双指数下降。对于非常窄的初级束输入(<<1 mm),DSF 显示出明显的低幅度长程散射剂量尾部。对于体部成像条件(水中 30 cm 直径),中心处的 DSF 在全宽十分之一最大值(FWTM)处为 160 mm,而在边缘处为 80 mm。与 PMMA 或水相比,聚乙烯模型的 DSF 更宽,任何材料的管电压越高,DSF 越宽。在水中 120 kVp 下,典型的体部蝴蝶结滤波器的中心处的 FWTM 分别为 80、180 和 250 mm,对于 10、30 和 50 cm 直径的水模型,在中心处为 80、180 和 250 mm,对于 10、30 和 50 cm 直径的水模型,在中心处为 80、180 和 250 mm,在中心处为 80、180 和 250 mm。在体部成像条件下(水中 30 cm 直径),中心处的 DSF 在全宽十分之一最大值(FWTM)处为 160 mm,而在边缘处为 80 mm。聚乙烯模型的 DSF 比 PMMA 或水更宽,任何材料的管电压越高,DSF 越宽。在水中 120 kVp 下,典型的体部蝴蝶结滤波器的中心处的 FWTM 分别为 80、180 和 250 mm,对于 10、30 和 50 cm 直径的水模型,在中心处为 80、180 和 250 mm,对于 10、30 和 50 cm 直径的水模型,在中心处为 80、180 和 250 mm。与 PMMA 或水相比,聚乙烯模型的 DSF 更宽,任何材料的管电压越高,DSF 越宽。在水中 120 kVp 下,典型的体部蝴蝶结滤波器的中心处的 FWTM 分别为 80、180 和 250 mm,对于 10、30 和 50 cm 直径的水模型,在中心处为 80、180 和 250 mm,对于 10、30 和 50 cm 直径的水模型,在中心处为 80、180 和 250 mm。在中心处为 16 厘米直径的圆柱中为 4,而在 32 厘米直径的圆柱中约为 12.5。与边缘相比,DSF 在体模中心的增加幅度更大。对于 32 cm 直径的三个等面积区域,边缘到中心的 SPR 分别约为 1.8、3.5 和 6.3。

结论

DSF 表现出低幅度长程尾部,在圆柱模型中延伸到相当远的距离。这些长尾产生的积累随着扫描长度的增加而在字段的中心(在 z=0 处)增加。DSF 分布使人们更好地了解 CT 剂量沉积在一系列相关成像参数下的趋势。感兴趣的各方可以使用 EPAPS 在 http://www.aip.org/pubservs/epaps.html 上获得 DSF 以及其他相关数据。

相似文献

1
Dose spread functions in computed tomography: a Monte Carlo study.
Med Phys. 2009 Oct;36(10):4547-54. doi: 10.1118/1.3223634.
6
New weighting factor of weighted CTDI equation for PMMA phantom diameter from 8 to 40 cm: A Monte Carlo study.
Med Phys. 2017 Dec;44(12):6603-6609. doi: 10.1002/mp.12601. Epub 2017 Oct 23.
8
Mathematical modelling of scanner-specific bowtie filters for Monte Carlo CT dosimetry.
Phys Med Biol. 2017 Feb 7;62(3):781-809. doi: 10.1088/1361-6560/aa5343. Epub 2017 Jan 10.
9
A measurement-based X-ray source model characterization for CT dosimetry computations.
J Appl Clin Med Phys. 2015 Nov 8;16(6):386-400. doi: 10.1120/jacmp.v16i6.5231.
10
The trouble with CTD100.
Med Phys. 2007 Apr;34(4):1364-71. doi: 10.1118/1.2713240.

本文引用的文献

1
Medical radiation exposure in the U.S. in 2006: preliminary results.
Health Phys. 2008 Nov;95(5):502-7. doi: 10.1097/01.HP.0000326333.42287.a2.
3
The trouble with CTD100.
Med Phys. 2007 Apr;34(4):1364-71. doi: 10.1118/1.2713240.
7
Novel methods of measuring single scan dose profiles and cumulative dose in CT.
Med Phys. 2005 Jan;32(1):98-109. doi: 10.1118/1.1835571.
8
A new look at CT dose measurement: beyond CTDI.
Med Phys. 2003 Jun;30(6):1272-80. doi: 10.1118/1.1576952.
10
Scatter/primary in mammography: Monte Carlo validation.
Med Phys. 2000 Aug;27(8):1818-31. doi: 10.1118/1.1287052.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验