Cassell Alan M, Li Jun, Nguyen-Vu Thuy-Duong Barbara, Koehne Jessica E, Chen Hua, Andrews Russell, Meyyappan M
UARC University of California Santa Cruz, M/S 229-1, NASA Ames Research Center Moffett Field, CA 94035, USA.
J Nanosci Nanotechnol. 2009 Aug;9(8):5038-46. doi: 10.1166/jnn.2009.gr06.
Vertically aligned carbon nanofibers (VACNFs) are grown directly on prefabricated electronic circuits with nanoscale precision. Utilizing the free-standing nanofiber array geometry, we have demonstrated the detection of nucleic acids to construct an ultrasensitive electrochemical sensor. Extending this technology towards in vivo applications, we have modified the free-standing VACNF arrays in order to achieve a multifunctional three dimensional (3-D) matrix that interpenetrates the neuronal network of PC12 cells. We found that PC12 cells cultured on the nanofiber arrays can form an extended neural network upon proper chemical and biochemical modification. The soft 3-D nanofiber array architecture provides a novel platform to fine-tune the topographical, mechanical, chemical, and electrical cues at sub-cellular scales. This biomaterial platform can be used for both fundamental studies of nanomaterial-cell interactions and the development of multifunctional, chronically stable implantable devices. The application of these devices and potential utility as a multifunctional platform for neurophysiology and biochemical studies will be discussed.
垂直排列的碳纳米纤维(VACNFs)以纳米级精度直接生长在预制电子电路上。利用独立的纳米纤维阵列结构,我们展示了核酸检测以构建超灵敏电化学传感器。将该技术扩展到体内应用,我们对独立的VACNF阵列进行了修饰,以实现一种多功能三维(3-D)基质,该基质可穿透PC12细胞的神经网络。我们发现,在纳米纤维阵列上培养的PC12细胞经过适当的化学和生化修饰后可以形成扩展的神经网络。柔软的3-D纳米纤维阵列结构提供了一个新颖的平台,可在亚细胞尺度上微调地形、机械、化学和电学线索。这个生物材料平台可用于纳米材料与细胞相互作用的基础研究以及多功能、长期稳定的可植入设备的开发。将讨论这些设备的应用以及作为神经生理学和生化研究多功能平台的潜在用途。