Nguyen-Vu T D Barbara, Chen Hua, Cassell Alan M, Andrews Russell J, Meyyappan M, Li Jun
NASA Ames Research Center, Moffett Field, CA 94035, USA.
IEEE Trans Biomed Eng. 2007 Jun;54(6 Pt 1):1121-8. doi: 10.1109/TBME.2007.891169.
Developing biomaterial constructs that closely mimic the natural tissue microenvironment with its complex chemical and physical cues is essential for improving the function and reliability of implantable devices, especially those that require direct neural-electrical interfaces. Here we demonstrate that free-standing vertically aligned carbon nanofiber (VACNF) arrays can be used as a multifunctional 3-D brush-like nanoengineered matrix that interpenetrates the neuronal network of PC12 cells. We found that PC12 neuron cells cultured on VACNF substrates can form extended neural network upon proper chemical and biochemical modifications. The soft 3-D VACNF architecture provides a new platform to fine-tune the topographical, mechanical, chemical, and electrical cues at subcellular nanoscale. This new biomaterial platform can be used for both fundamental studies of material-cell interactions and the development of chronically stable implantable neural devices. Micropatterned multiplex VACNF arrays can be selectively controlled by electrical and electrochemical methods to provide localized stimulation with extraordinary spatiotemporal resolution. Further development of this technology may potentially result in a highly multiplex closed-loop system with multifunctions for neuromodulation and neuroprostheses.
开发能够紧密模拟具有复杂化学和物理信号的天然组织微环境的生物材料构建体,对于提高可植入设备的功能和可靠性至关重要,尤其是那些需要直接神经电接口的设备。在此,我们证明了独立的垂直排列碳纳米纤维(VACNF)阵列可作为一种多功能的三维刷状纳米工程基质,它能穿透PC12细胞的神经网络。我们发现,在VACNF基质上培养的PC12神经元细胞经过适当的化学和生物化学修饰后可形成扩展的神经网络。柔软的三维VACNF结构提供了一个新平台,可在亚细胞纳米尺度上微调地形、机械、化学和电信号。这个新的生物材料平台可用于材料-细胞相互作用的基础研究以及长期稳定的可植入神经设备的开发。微图案化的多重VACNF阵列可通过电学和电化学方法进行选择性控制,以提供具有非凡时空分辨率的局部刺激。这项技术的进一步发展可能会产生一个具有神经调节和神经假体多功能的高度多重闭环系统。