Center for Metabolic Biology, Arizona State University, Tempe, Arizona 85287, USA.
Biochemistry. 2010 Jan 12;49(1):68-77. doi: 10.1021/bi9016022.
The physical properties of substrates are known to control cell adhesion via integrin-mediated signaling. Fibrin and fibrinogen, the principal components of hemostatic and pathological thrombi, may represent biologically relevant substrates whose variable physical properties control adhesion of leukocytes and platelets. In our previous work, we have shown that binding of fibrinogen to the surface of fibrin clot prevents cell adhesion by creating an antiadhesive fibrinogen layer. Furthermore, fibrinogen immobilized on various surfaces at high density supports weak cell adhesion whereas at low density it is highly adhesive. To explore the mechanism underlying differential cell adhesion, we examined the structural and physical properties of surfaces prepared by deposition of various concentrations of fibrinogen using atomic force microscopy and force spectroscopy. Fibrinogen deposition at high density resulted in an aggregated multilayered material characterized by low adhesion forces. In contrast, immobilization of fibrinogen at low density produced a single layer in which molecules were directly attached to the solid surface, resulting in higher adhesion forces. Consistent with their distinct physical properties, low- but not high-density fibrinogen induced strong alpha(IIb)beta(3)-mediated outside-in signaling in platelets, resulting in their spreading. Moreover, while intact fibrin gels induced strong signaling in platelets, deposition of fibrinogen on the surface of fibrin resulted in diminished cell signaling. The data suggest that deposition of a multilayered fibrinogen matrix prevents stable cell adhesion by modifying the physical properties of surfaces, which results in reduced force generation and insufficient signaling. The mechanism whereby circulating fibrinogen alters adhesive properties of fibrin clots may have important implications for control of thrombus formation and thrombogenicity of biomaterials.
基板的物理性质已知可通过整合素介导的信号转导控制细胞黏附。纤维蛋白和纤维蛋白原是止血和病理性血栓的主要成分,它们可能代表具有生物学相关性的基板,其可变的物理性质控制白细胞和血小板的黏附。在我们之前的工作中,我们已经表明纤维蛋白原与纤维蛋白凝块表面的结合通过形成抗黏附纤维蛋白原层来防止细胞黏附。此外,在各种表面上以高密度固定的纤维蛋白原支持弱细胞黏附,而在低浓度时则具有很强的黏附性。为了探索差异细胞黏附的机制,我们使用原子力显微镜和力谱法检查了通过沉积不同浓度的纤维蛋白原制备的表面的结构和物理性质。高密度纤维蛋白原沉积导致聚集的多层材料,其特点是粘附力低。相比之下,在低浓度下固定纤维蛋白原产生单层,其中分子直接附着在固体表面上,导致更高的粘附力。与它们独特的物理性质一致,低浓度但不是高浓度的纤维蛋白原诱导血小板中强烈的α(IIb)β(3)介导的外向信号转导,导致其扩散。此外,尽管完整的纤维蛋白凝胶在血小板中诱导强烈的信号转导,但纤维蛋白原沉积在纤维蛋白表面会导致细胞信号转导减弱。这些数据表明,多层纤维蛋白原基质的沉积通过改变表面的物理性质来防止稳定的细胞黏附,从而导致力的产生减少和信号转导不足。循环纤维蛋白原改变纤维蛋白凝块黏附特性的机制可能对血栓形成的控制和生物材料的血栓形成性具有重要意义。