School of Life Sciences, Arizona State University, Tempe, Arizona 85287, USA.
J Biol Chem. 2012 Dec 7;287(50):41979-90. doi: 10.1074/jbc.M112.410696. Epub 2012 Oct 18.
Adsorption of fibrinogen on fibrin clots and other surfaces strongly reduces integrin-mediated adhesion of platelets and leukocytes with implications for the surface-mediated control of thrombus growth and blood compatibility of biomaterials. The underlying mechanism of this process is surface-induced aggregation of fibrinogen, resulting in the assembly of a nanoscale multilayered matrix. The matrix is extensible, which makes it incapable of transducing strong mechanical forces via cellular integrins, resulting in insufficient intracellular signaling and weak cell adhesion. To determine the mechanism of the multilayer formation, the physical and adhesive properties of fibrinogen matrices prepared from human plasma fibrinogen (hFg), recombinant normal (rFg), and fibrinogen with the truncated αC regions (FgAα251) were compared. Using atomic force microscopy and force spectroscopy, we show that whereas hFg and rFg generated the matrices with a thickness of ∼8 nm consisting of 7-8 molecular layers, the deposition of FgAα251 was terminated at two layers, indicating that the αC regions are essential for the multilayer formation. The extensibility of the matrix prepared from FgAα251 was 2-fold lower than that formed from hFg and rFg. In agreement with previous findings that cell adhesion inversely correlates with the extensibility of the fibrinogen matrix, the less extensible FgAα251 matrix and matrices generated from human fibrinogen variants lacking the αC regions supported sustained adhesion of leukocytes and platelets. The persistent adhesiveness of matrices formed from fibrinogen derivatives without the αC regions may have implications for conditions in which elevated levels of these molecules are found, including vascular pathologies, diabetes, thrombolytic therapy, and dysfibrinogenemia.
纤维蛋白原在纤维蛋白凝块和其他表面上的吸附强烈降低了整合素介导的血小板和白细胞的黏附,这对血栓生长的表面介导控制和生物材料的血液相容性有影响。这个过程的潜在机制是纤维蛋白原的表面诱导聚集,导致组装成纳米级多层基质。该基质具有可伸展性,使其无法通过细胞整合素来传递强大的机械力,从而导致细胞内信号不足和细胞黏附力弱。为了确定多层形成的机制,比较了人血浆纤维蛋白原(hFg)、重组正常纤维蛋白原(rFg)和截短αC 区的纤维蛋白原(FgAα251)制备的纤维蛋白原基质的物理和粘附特性。使用原子力显微镜和力谱学,我们表明 hFg 和 rFg 生成的基质厚度约为 8nm,由 7-8 个分子层组成,而 FgAα251 的沉积在两层终止,表明αC 区对于多层形成是必不可少的。FgAα251 制备的基质的可伸展性比 hFg 和 rFg 形成的基质低 2 倍。与先前的发现一致,即细胞黏附与纤维蛋白原基质的可伸展性成反比,较不可伸展的 FgAα251 基质和缺乏αC 区的人纤维蛋白原变体生成的基质支持白细胞和血小板的持续黏附。缺乏αC 区的纤维蛋白原衍生物形成的基质的持续黏附性可能对这些分子水平升高的情况有影响,包括血管病理学、糖尿病、溶栓治疗和纤维蛋白原血症。