Department of Preventive Medicine, University of Southern California, Los Angeles, California 90089, USA.
Genet Epidemiol. 2013 Sep;37(6):603-13. doi: 10.1002/gepi.21748. Epub 2013 Jul 19.
In a genome-wide association study (GWAS), investigators typically focus their primary analysis on the direct (marginal) associations of each single nucleotide polymorphism (SNP) with the trait. Some SNPs that are truly associated with the trait may not be identified in this scan if they have a weak marginal effect and thus low power to be detected. However, these SNPs may be quite important in subgroups of the population defined by an environmental or personal factor, and may be detectable if such a factor is carefully considered in a gene-environment (G × E) interaction analysis. We address the question "Using a genome wide interaction scan (GWIS), can we find new genes that were not found in the primary GWAS scan?" We review commonly used approaches for conducting a GWIS in case-control studies, and propose a new two-step screening and testing method (EDG×E) that is optimized to find genes with a weak marginal effect. We simulate several scenarios in which our two-step method provides 70-80% power to detect a disease locus while a marginal scan provides less than 5% power. We also provide simulations demonstrating that the EDG×E method outperforms other GWIS approaches (including case only and previously proposed two-step methods) for finding genes with a weak marginal effect. Application of this method to a G × Sex scan for childhood asthma reveals two potentially interesting SNPs that were not identified in the marginal-association scan. We distribute a new software program (G×Escan, available at http://biostats.usc.edu/software) that implements this new method as well as several other GWIS approaches.
在全基因组关联研究 (GWAS) 中,研究人员通常将主要分析集中在每个单核苷酸多态性 (SNP) 与性状的直接 (边缘) 关联上。如果某些 SNP 与性状具有较弱的边缘效应,从而检测能力较低,则在这种扫描中可能无法识别出真正与性状相关的 SNP。然而,这些 SNP 在由环境或个人因素定义的人群亚组中可能非常重要,如果在基因-环境 (G×E) 相互作用分析中仔细考虑这些因素,则可能会检测到这些 SNP。我们提出了一个问题:“使用全基因组相互作用扫描 (GWIS),我们能否找到在主要 GWAS 扫描中未发现的新基因?”我们回顾了在病例对照研究中进行 GWIS 常用的方法,并提出了一种新的两步筛选和测试方法 (EDG×E),该方法针对具有较弱边缘效应的基因进行了优化。我们模拟了几种情况,在这些情况下,我们的两步方法提供了 70-80%的检测疾病基因座的能力,而边缘扫描的能力则低于 5%。我们还提供了模拟结果,表明 EDG×E 方法在发现具有较弱边缘效应的基因方面优于其他 GWIS 方法(包括仅病例和以前提出的两步方法)。将该方法应用于儿童哮喘的 G×性别扫描揭示了两个在边缘关联扫描中未识别出的潜在有趣的 SNP。我们分发了一个新的软件程序 (G×Escan,可在 http://biostats.usc.edu/software 上获得),该程序实现了这种新方法以及其他几种 GWIS 方法。