Suppr超能文献

通过全基因组关联研究检测 G × E 相互作用来发现新基因。

Finding novel genes by testing G × E interactions in a genome-wide association study.

机构信息

Department of Preventive Medicine, University of Southern California, Los Angeles, California 90089, USA.

出版信息

Genet Epidemiol. 2013 Sep;37(6):603-13. doi: 10.1002/gepi.21748. Epub 2013 Jul 19.

Abstract

In a genome-wide association study (GWAS), investigators typically focus their primary analysis on the direct (marginal) associations of each single nucleotide polymorphism (SNP) with the trait. Some SNPs that are truly associated with the trait may not be identified in this scan if they have a weak marginal effect and thus low power to be detected. However, these SNPs may be quite important in subgroups of the population defined by an environmental or personal factor, and may be detectable if such a factor is carefully considered in a gene-environment (G × E) interaction analysis. We address the question "Using a genome wide interaction scan (GWIS), can we find new genes that were not found in the primary GWAS scan?" We review commonly used approaches for conducting a GWIS in case-control studies, and propose a new two-step screening and testing method (EDG×E) that is optimized to find genes with a weak marginal effect. We simulate several scenarios in which our two-step method provides 70-80% power to detect a disease locus while a marginal scan provides less than 5% power. We also provide simulations demonstrating that the EDG×E method outperforms other GWIS approaches (including case only and previously proposed two-step methods) for finding genes with a weak marginal effect. Application of this method to a G × Sex scan for childhood asthma reveals two potentially interesting SNPs that were not identified in the marginal-association scan. We distribute a new software program (G×Escan, available at http://biostats.usc.edu/software) that implements this new method as well as several other GWIS approaches.

摘要

在全基因组关联研究 (GWAS) 中,研究人员通常将主要分析集中在每个单核苷酸多态性 (SNP) 与性状的直接 (边缘) 关联上。如果某些 SNP 与性状具有较弱的边缘效应,从而检测能力较低,则在这种扫描中可能无法识别出真正与性状相关的 SNP。然而,这些 SNP 在由环境或个人因素定义的人群亚组中可能非常重要,如果在基因-环境 (G×E) 相互作用分析中仔细考虑这些因素,则可能会检测到这些 SNP。我们提出了一个问题:“使用全基因组相互作用扫描 (GWIS),我们能否找到在主要 GWAS 扫描中未发现的新基因?”我们回顾了在病例对照研究中进行 GWIS 常用的方法,并提出了一种新的两步筛选和测试方法 (EDG×E),该方法针对具有较弱边缘效应的基因进行了优化。我们模拟了几种情况,在这些情况下,我们的两步方法提供了 70-80%的检测疾病基因座的能力,而边缘扫描的能力则低于 5%。我们还提供了模拟结果,表明 EDG×E 方法在发现具有较弱边缘效应的基因方面优于其他 GWIS 方法(包括仅病例和以前提出的两步方法)。将该方法应用于儿童哮喘的 G×性别扫描揭示了两个在边缘关联扫描中未识别出的潜在有趣的 SNP。我们分发了一个新的软件程序 (G×Escan,可在 http://biostats.usc.edu/software 上获得),该程序实现了这种新方法以及其他几种 GWIS 方法。

相似文献

1
Finding novel genes by testing G × E interactions in a genome-wide association study.
Genet Epidemiol. 2013 Sep;37(6):603-13. doi: 10.1002/gepi.21748. Epub 2013 Jul 19.
2
Detecting Gene-Environment Interactions for a Quantitative Trait in a Genome-Wide Association Study.
Genet Epidemiol. 2016 Jul;40(5):394-403. doi: 10.1002/gepi.21977. Epub 2016 May 27.
4
A Unified Model for the Analysis of Gene-Environment Interaction.
Am J Epidemiol. 2019 Apr 1;188(4):760-767. doi: 10.1093/aje/kwy278.
5
Improved two-step testing of genome-wide gene-environment interactions.
Genet Epidemiol. 2023 Mar;47(2):152-166. doi: 10.1002/gepi.22509. Epub 2022 Dec 26.
6
Two-step hypothesis testing to detect gene-environment interactions in a genome-wide scan with a survival endpoint.
Stat Med. 2022 Apr 30;41(9):1644-1657. doi: 10.1002/sim.9319. Epub 2022 Jan 24.
7
Efficient genome-wide association testing of gene-environment interaction in case-parent trios.
Am J Epidemiol. 2010 Jul 1;172(1):116-22. doi: 10.1093/aje/kwq097. Epub 2010 Jun 11.
8
9
Efficient two-step testing of gene-gene interactions in genome-wide association studies.
Genet Epidemiol. 2013 Jul;37(5):440-51. doi: 10.1002/gepi.21720. Epub 2013 Apr 30.

引用本文的文献

2
Recent findings and future directions for the intersection of genetic and environmental contributions to schizophrenia.
Genom Psychiatry. 2025 May 1;1(3):17-21. doi: 10.61373/gp024v.0055. Epub 2024 Aug 7.
3
Pathway polygenic risk scores (pPRS) for the analysis of gene-environment interaction.
PLoS Genet. 2025 Aug 5;21(8):e1011543. doi: 10.1371/journal.pgen.1011543. eCollection 2025 Aug.
5
Pathway Polygenic Risk Scores (pPRS) for the Analysis of Gene-environment Interaction.
bioRxiv. 2024 Dec 19:2024.12.16.628610. doi: 10.1101/2024.12.16.628610.
7
Two genome-wide interaction loci modify the association of nonsteroidal anti-inflammatory drugs with colorectal cancer.
Sci Adv. 2024 May 31;10(22):eadk3121. doi: 10.1126/sciadv.adk3121. Epub 2024 May 29.
8
Gene-environment interactions in human health.
Nat Rev Genet. 2024 Nov;25(11):768-784. doi: 10.1038/s41576-024-00731-z. Epub 2024 May 28.
9
Genome-wide investigation of exogenous female hormones, genetic variation, and venous thromboembolism risk.
J Thromb Haemost. 2024 Aug;22(8):2261-2269. doi: 10.1016/j.jtha.2024.05.011. Epub 2024 May 21.

本文引用的文献

1
Two-stage testing procedures with independent filtering for genome-wide gene-environment interaction.
Biometrika. 2012 Dec;99(4):929-944. doi: 10.1093/biomet/ass044. Epub 2012 Sep 25.
3
Powerful cocktail methods for detecting genome-wide gene-environment interaction.
Genet Epidemiol. 2012 Apr;36(3):183-94. doi: 10.1002/gepi.21610.
4
Testing gene-environment interaction in large-scale case-control association studies: possible choices and comparisons.
Am J Epidemiol. 2012 Feb 1;175(3):177-90. doi: 10.1093/aje/kwr367. Epub 2011 Dec 22.
6
Sample size requirements to detect gene-environment interactions in genome-wide association studies.
Genet Epidemiol. 2011 Apr;35(3):201-10. doi: 10.1002/gepi.20569. Epub 2011 Feb 9.
7
A large-scale, consortium-based genomewide association study of asthma.
N Engl J Med. 2010 Sep 23;363(13):1211-1221. doi: 10.1056/NEJMoa0906312.
8
Efficient genome-wide association testing of gene-environment interaction in case-parent trios.
Am J Epidemiol. 2010 Jul 1;172(1):116-22. doi: 10.1093/aje/kwq097. Epub 2010 Jun 11.
9
Case-control studies of gene-environment interaction: Bayesian design and analysis.
Biometrics. 2010 Sep;66(3):934-48. doi: 10.1111/j.1541-0420.2009.01357.x.
10
Potential etiologic and functional implications of genome-wide association loci for human diseases and traits.
Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7. doi: 10.1073/pnas.0903103106. Epub 2009 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验