Brutti Pierpaolo, De Santis Fulvio, Gubbiotti Stefania
Dipartimento di Statistica, Probabilità e Statistiche Applicate, Sapienza Università di Roma, Roma, Italy.
Stat Med. 2008 Jun 15;27(13):2290-306. doi: 10.1002/sim.3175.
This article deals with determination of a sample size that guarantees the success of a trial. We follow a Bayesian approach and we say an experiment is successful if it yields a large posterior probability that an unknown parameter of interest (an unknown treatment effect or an effects-difference) is greater than a chosen threshold. In this context, a straightforward sample size criterion is to select the minimal number of observations so that the predictive probability of a successful trial is sufficiently large. In the paper we address the most typical criticism to Bayesian methods-their sensitivity to prior assumptions-by proposing a robust version of this sample size criterion. Specifically, instead of a single distribution, we consider a class of plausible priors for the parameter of interest. Robust sample sizes are then selected by looking at the predictive distribution of the lower bound of the posterior probability that the unknown parameter is greater than a chosen threshold. For their flexibility and mathematical tractability, we consider classes of epsilon-contamination priors. As specific applications we consider sample size determination for a Phase III trial.
本文探讨了确保试验成功所需样本量的确定方法。我们采用贝叶斯方法,并且规定,如果一个实验得出未知感兴趣参数(未知治疗效果或效果差异)大于选定阈值的后验概率很大,那么该实验就是成功的。在此背景下,一个直接的样本量标准是选择最少的观测次数,以使成功试验的预测概率足够大。在本文中,我们通过提出这一样本量标准的稳健版本,来应对对贝叶斯方法最典型的批评——它们对先验假设的敏感性。具体而言,我们考虑的不是单一分布,而是针对感兴趣参数的一类合理先验分布。然后,通过查看未知参数大于选定阈值的后验概率下限的预测分布来选择稳健样本量。出于灵活性和数学易处理性的考虑,我们考虑了ε-污染先验分布类。作为具体应用,我们考虑了III期试验的样本量确定。