Suppr超能文献

临床试验中稳健的贝叶斯样本量确定

Robust Bayesian sample size determination in clinical trials.

作者信息

Brutti Pierpaolo, De Santis Fulvio, Gubbiotti Stefania

机构信息

Dipartimento di Statistica, Probabilità e Statistiche Applicate, Sapienza Università di Roma, Roma, Italy.

出版信息

Stat Med. 2008 Jun 15;27(13):2290-306. doi: 10.1002/sim.3175.

Abstract

This article deals with determination of a sample size that guarantees the success of a trial. We follow a Bayesian approach and we say an experiment is successful if it yields a large posterior probability that an unknown parameter of interest (an unknown treatment effect or an effects-difference) is greater than a chosen threshold. In this context, a straightforward sample size criterion is to select the minimal number of observations so that the predictive probability of a successful trial is sufficiently large. In the paper we address the most typical criticism to Bayesian methods-their sensitivity to prior assumptions-by proposing a robust version of this sample size criterion. Specifically, instead of a single distribution, we consider a class of plausible priors for the parameter of interest. Robust sample sizes are then selected by looking at the predictive distribution of the lower bound of the posterior probability that the unknown parameter is greater than a chosen threshold. For their flexibility and mathematical tractability, we consider classes of epsilon-contamination priors. As specific applications we consider sample size determination for a Phase III trial.

摘要

本文探讨了确保试验成功所需样本量的确定方法。我们采用贝叶斯方法,并且规定,如果一个实验得出未知感兴趣参数(未知治疗效果或效果差异)大于选定阈值的后验概率很大,那么该实验就是成功的。在此背景下,一个直接的样本量标准是选择最少的观测次数,以使成功试验的预测概率足够大。在本文中,我们通过提出这一样本量标准的稳健版本,来应对对贝叶斯方法最典型的批评——它们对先验假设的敏感性。具体而言,我们考虑的不是单一分布,而是针对感兴趣参数的一类合理先验分布。然后,通过查看未知参数大于选定阈值的后验概率下限的预测分布来选择稳健样本量。出于灵活性和数学易处理性的考虑,我们考虑了ε-污染先验分布类。作为具体应用,我们考虑了III期试验的样本量确定。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验