Suppr超能文献

鉴定 Comamonas sp. 菌株 E6 中对苯二甲酸降解基因。

Characterization of the isophthalate degradation genes of Comamonas sp. strain E6.

机构信息

Department of Bioengineering, Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

出版信息

Appl Environ Microbiol. 2010 Jan;76(2):519-27. doi: 10.1128/AEM.01270-09. Epub 2009 Nov 20.

Abstract

The isophthalate (IPA) degradation gene cluster (iphACBDR) responsible for the conversion of IPA into protocatechuate (PCA) was isolated from Comamonas sp. strain E6, which utilizes phthalate isomers as sole carbon and energy sources via the PCA 4,5-cleavage pathway. Based on amino acid sequence similarity, the iphA, iphC, iphB, iphD, and iphR genes were predicted to code for an oxygenase component of IPA dioxygenase (IPADO), a periplasmic IPA binding receptor, a 1,2-dihydroxy-3,5-cyclohexadiene-1,5-dicarboxylate (1,5-DCD) dehydrogenase, a reductase component of IPADO, and an IclR-type transcriptional regulator, respectively. The iphACBDR genes constitute a single transcriptional unit, and transcription of the iph catabolic operon was induced during growth of E6 on IPA. The iphA, iphD, and iphB genes were expressed in Escherichia coli. Crude IphA and IphD converted IPA in the presence of NADPH into a product which was transformed to PCA by IphB. These results suggested that IPADO is a two-component dioxygenase that consists of a terminal oxygenase component (IphA) and a reductase component (IphD) and that iphB encodes the 1,5-DCD dehydrogenase. Disruption of iphA and iphB resulted in complete loss of growth of E6 on IPA. Inactivation of iphD significantly affected growth on IPA, and the iphC mutant did not grow on IPA at neutral pH. These results indicated that the iphACBD genes are essential for the catabolism of IPA in E6. Disruption of iphR resulted in faster growth of E6 on IPA, suggesting that iphR encodes a repressor for the iph catabolic operon. Promoter analysis of the operon supported this notion.

摘要

从利用邻苯二甲酸酯异构体作为唯一碳源和能源通过 PCA 4,5-裂解途径的 Comamonas sp. 菌株 E6 中分离出负责将间苯二甲酸(IPA)转化为原儿茶酸(PCA)的间苯二甲酸(IPA)降解基因簇(iphACBDR)。根据氨基酸序列相似性,iphA、iphC、iphB、iphD 和 iphR 基因预测分别编码 IPA 双加氧酶(IPADO)的氧合酶组件、IPA 结合受体的周质、1,2-二羟基-3,5-环己二烯-1,5-二羧酸(1,5-DCD)脱氢酶、IPADO 的还原酶组件和 IclR 型转录调节因子。iphACBDR 基因构成单个转录单元,E6 生长过程中,iph 分解代谢操纵子的转录被诱导。iphA、iphD 和 iphB 基因在大肠杆菌中表达。在 NADPH 的存在下,粗 IphA 和 IphD 将 IPA 转化为 IphB 转化为 PCA 的产物。这些结果表明,IPADO 是一种由末端氧合酶组件(IphA)和还原酶组件(IphD)组成的双组分双加氧酶,并且 iphB 编码 1,5-DCD 脱氢酶。iphA 和 iphB 的缺失导致 E6 在 IPA 上的生长完全丧失。iphD 的失活对 IPA 上的生长有显著影响,而 iphC 突变体在中性 pH 下不能在 IPA 上生长。这些结果表明,iphACBD 基因对于 E6 中 IPA 的分解代谢是必不可少的。iphR 的缺失导致 E6 在 IPA 上的生长更快,表明 iphR 编码 iph 分解代谢操纵子的抑制剂。操纵子的启动子分析支持了这一观点。

相似文献

1
Characterization of the isophthalate degradation genes of Comamonas sp. strain E6.
Appl Environ Microbiol. 2010 Jan;76(2):519-27. doi: 10.1128/AEM.01270-09. Epub 2009 Nov 20.
2
Regulation of the isophthalate catabolic operon controlled by IphR in Comamonas sp. strain E6.
FEMS Microbiol Lett. 2012 Apr;329(2):186-92. doi: 10.1111/j.1574-6968.2012.02521.x. Epub 2012 Feb 23.
3
Characterization of the terephthalate degradation genes of Comamonas sp. strain E6.
Appl Environ Microbiol. 2006 Mar;72(3):1825-32. doi: 10.1128/AEM.72.3.1825-1832.2006.
4
Characterization of the protocatechuate 4,5-cleavage pathway operon in Comamonas sp. strain E6 and discovery of a novel pathway gene.
Appl Environ Microbiol. 2010 Dec;76(24):8093-101. doi: 10.1128/AEM.01863-10. Epub 2010 Oct 15.
5
Transcriptional regulation of the terephthalate catabolism operon in Comamonas sp. strain E6.
Appl Environ Microbiol. 2010 Sep;76(18):6047-55. doi: 10.1128/AEM.00742-10. Epub 2010 Jul 23.
6
Novel tripartite aromatic acid transporter essential for terephthalate uptake in Comamonas sp. strain E6.
Appl Environ Microbiol. 2013 Oct;79(19):6148-55. doi: 10.1128/AEM.01600-13. Epub 2013 Aug 2.
7
Molecular analysis of isophthalate and terephthalate degradation by Comamonas testosteroni YZW-D.
Environ Health Perspect. 1995 Jun;103 Suppl 5(Suppl 5):9-12. doi: 10.1289/ehp.95103s49.
8
Uncovering the protocatechuate 2,3-cleavage pathway genes.
J Bacteriol. 2009 Nov;191(21):6758-68. doi: 10.1128/JB.00840-09. Epub 2009 Aug 28.
9
Enzymatic properties of terephthalate 1,2-dioxygenase of Comamonas sp. strain E6.
Biosci Biotechnol Biochem. 2008 Sep;72(9):2335-41. doi: 10.1271/bbb.80236. Epub 2008 Sep 7.

引用本文的文献

3
Mechanisms and high-value applications of phthalate isomers degradation pathways in bacteria.
World J Microbiol Biotechnol. 2024 Jun 21;40(8):247. doi: 10.1007/s11274-024-04060-5.
4
Biodegradation of phthalic acid and terephthalic acid by Comamonas testosteroni strains.
Folia Microbiol (Praha). 2024 Dec;69(6):1343-1353. doi: 10.1007/s12223-024-01176-x. Epub 2024 May 29.
5
Unveiling the regulatory mechanisms of salicylate degradation gene cluster in sp. strain X9.
Appl Environ Microbiol. 2023 Oct 31;89(10):e0080223. doi: 10.1128/aem.00802-23. Epub 2023 Oct 6.
7
Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism.
Proc Natl Acad Sci U S A. 2022 Mar 29;119(13):e2121426119. doi: 10.1073/pnas.2121426119. Epub 2022 Mar 21.
8
Structural Insights into Dihydroxylation of Terephthalate, a Product of Polyethylene Terephthalate Degradation.
J Bacteriol. 2022 Mar 15;204(3):e0054321. doi: 10.1128/JB.00543-21. Epub 2022 Jan 10.
9
Biodegradation of aromatic pollutants meets synthetic biology.
Synth Syst Biotechnol. 2021 Jul 1;6(3):153-162. doi: 10.1016/j.synbio.2021.06.001. eCollection 2021 Sep.

本文引用的文献

1
Bacterial degradation of phthalate isomers and their esters.
Indian J Microbiol. 2008 Mar;48(1):19-34. doi: 10.1007/s12088-008-0003-8. Epub 2008 May 1.
2
Uncovering the protocatechuate 2,3-cleavage pathway genes.
J Bacteriol. 2009 Nov;191(21):6758-68. doi: 10.1128/JB.00840-09. Epub 2009 Aug 28.
3
Enzymatic properties of terephthalate 1,2-dioxygenase of Comamonas sp. strain E6.
Biosci Biotechnol Biochem. 2008 Sep;72(9):2335-41. doi: 10.1271/bbb.80236. Epub 2008 Sep 7.
4
Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis.
Appl Microbiol Biotechnol. 2007 Aug;76(1):159-68. doi: 10.1007/s00253-007-0997-6. Epub 2007 May 5.
5
Transcriptomic analysis reveals a bifurcated terephthalate degradation pathway in Rhodococcus sp. strain RHA1.
J Bacteriol. 2007 Mar;189(5):1641-7. doi: 10.1128/JB.01322-06. Epub 2006 Dec 1.
6
Characterization of the terephthalate degradation genes of Comamonas sp. strain E6.
Appl Environ Microbiol. 2006 Mar;72(3):1825-32. doi: 10.1128/AEM.72.3.1825-1832.2006.
7
Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17.
FEMS Microbiol Lett. 2005 Nov 15;252(2):207-13. doi: 10.1016/j.femsle.2005.08.045. Epub 2005 Sep 12.
8
Rieske business: structure-function of Rieske non-heme oxygenases.
Biochem Biophys Res Commun. 2005 Dec 9;338(1):175-90. doi: 10.1016/j.bbrc.2005.08.222. Epub 2005 Sep 8.
9
Structure of the terminal oxygenase component of angular dioxygenase, carbazole 1,9a-dioxygenase.
J Mol Biol. 2005 Aug 12;351(2):355-70. doi: 10.1016/j.jmb.2005.05.059.
10
Catabolism of benzoate and phthalate in Rhodococcus sp. strain RHA1: redundancies and convergence.
J Bacteriol. 2005 Jun;187(12):4050-63. doi: 10.1128/JB.187.12.4050-4063.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验