Suppr超能文献

基于异常值检测的两种方法从微阵列数据中检测组织选择性基因的评估。

Evaluation of two outlier-detection-based methods for detecting tissue-selective genes from microarray data.

作者信息

Kadota Koji, Konishi Tomokazu, Shimizu Kentaro

机构信息

Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.

出版信息

Gene Regul Syst Bio. 2007 May 1;1:9-15.

Abstract

Large-scale expression profiling using DNA microarrays enables identification of tissue-selective genes for which expression is considerably higher and/or lower in some tissues than in others. Among numerous possible methods, only two outlier-detection-based methods (an AIC-based method and Sprent's non-parametric method) can treat equally various types of selective patterns, but they produce substantially different results. We investigated the performance of these two methods for different parameter settings and for a reduced number of samples. We focused on their ability to detect selective expression patterns robustly. We applied them to public microarray data collected from 36 normal human tissue samples and analyzed the effects of both changing the parameter settings and reducing the number of samples. The AIC-based method was more robust in both cases. The findings confirm that the use of the AIC-based method in the recently proposed ROKU method for detecting tissue-selective expression patterns is correct and that Sprent's method is not suitable for ROKU.

摘要

使用DNA微阵列进行大规模表达谱分析能够鉴定出组织选择性基因,这些基因在某些组织中的表达明显高于和/或低于其他组织。在众多可能的方法中,只有两种基于异常值检测的方法(基于AIC的方法和斯普伦特的非参数方法)能够同等处理各种类型的选择性模式,但它们产生的结果却大不相同。我们研究了这两种方法在不同参数设置和样本数量减少情况下的性能。我们重点关注它们稳健检测选择性表达模式的能力。我们将它们应用于从36个正常人体组织样本收集的公共微阵列数据,并分析了改变参数设置和减少样本数量的影响。在这两种情况下,基于AIC的方法都更稳健。这些发现证实了在最近提出的用于检测组织选择性表达模式的ROKU方法中使用基于AIC的方法是正确的,而斯普伦特的方法不适用于ROKU。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2994/2759137/f586d850fc5b/grsb-2007-009f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验