Suppr超能文献

QSAR 模型在预测微粒体稳定性中的应用:鉴定大鼠、人类和小鼠微粒体稳定性的良好和不良结构特征。

Development of QSAR models for microsomal stability: identification of good and bad structural features for rat, human and mouse microsomal stability.

机构信息

Department of Computational Chemistry and Chemoinformatics, Wyeth Research, Pearl River, NY 10965, USA.

出版信息

J Comput Aided Mol Des. 2010 Jan;24(1):23-35. doi: 10.1007/s10822-009-9309-9. Epub 2009 Nov 24.

Abstract

High throughput microsomal stability assays have been widely implemented in drug discovery and many companies have accumulated experimental measurements for thousands of compounds. Such datasets have been used to develop in silico models to predict metabolic stability and guide the selection of promising candidates for synthesis. This approach has proven most effective when selecting compounds from proposed virtual libraries prior to synthesis. However, these models are not easily interpretable at the structural level, and thus provide little insight to guide traditional synthetic efforts. We have developed global classification models of rat, mouse and human liver microsomal stability using in-house data. These models were built with FCFP_6 fingerprints using a Naïve Bayesian classifier within Pipeline Pilot. The test sets were correctly classified as stable or unstable with satisfying accuracies of 78, 77 and 75% for rat, human and mouse models, respectively. The prediction confidence was assigned using the Bayesian score to assess the applicability of the models. Using the resulting models, we developed a novel data mining strategy to identify structural features associated with good and bad microsomal stability. We also used this approach to identify structural features which are good for one species but bad for another. With these findings, the structure-metabolism relationships are likely to be understood faster and earlier in drug discovery.

摘要

高通量微粒体稳定性测定法已广泛应用于药物发现,许多公司已经积累了数千种化合物的实验测量数据。这些数据集已被用于开发计算机模型,以预测代谢稳定性,并指导有前途的候选化合物的合成选择。在合成之前从提议的虚拟库中选择化合物时,这种方法最为有效。然而,这些模型在结构水平上不易解释,因此几乎无法提供指导传统合成工作的见解。我们使用内部数据开发了大鼠、小鼠和人肝微粒体稳定性的全局分类模型。这些模型使用 Pipeline Pilot 中的 Naive Bayesian 分类器,使用 FCFP_6 指纹构建。测试集的稳定或不稳定分类具有令人满意的准确率,大鼠、人类和小鼠模型的准确率分别为 78%、77%和 75%。使用贝叶斯评分来分配预测置信度,以评估模型的适用性。使用得到的模型,我们开发了一种新的数据挖掘策略,以识别与良好和不良微粒体稳定性相关的结构特征。我们还使用这种方法来识别对一种物种有益但对另一种物种有害的结构特征。有了这些发现,结构-代谢关系可能会在药物发现过程中更快更早地被理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验