Optibrium Ltd, 7226 IQ Cambridge, Beach Drive, Cambridge, CB25 9TL, UK.
Chem Biodivers. 2009 Nov;6(11):2144-51. doi: 10.1002/cbdv.200900148.
ADMET Models, whether in silico or in vitro, are commonly used to 'profile' molecules, to identify potential liabilities or filter out molecules expected to have undesirable properties. While useful, this is the most basic application of such models. Here, we will show how models may be used to go 'beyond profiling' to guide key decisions in drug discovery. For example, selection of chemical series to focus resources with confidence or design of improved molecules targeting structural modifications to improve key properties. To prioritise molecules and chemical series, the success criteria for properties and their relative importance to a project's objective must be defined. Data from models (experimental or predicted) may then be used to assess each molecule's balance of properties against those requirements. However, to make decisions with confidence, the uncertainties in all of the data must also be considered. In silico models encode information regarding the relationship between molecular structure and properties. This is used to predict the property value of a novel molecule. However, further interpretation can yield information on the contributions of different groups in a molecule to the property and the sensitivity of the property to structural changes. Visualising this information can guide the redesign process. In this article, we describe methods to achieve these goals and drive drug-discovery decisions and illustrate the results with practical examples.
ADMET 模型,无论是基于计算机的还是基于体外的,通常都用于“分析”分子,以识别潜在的缺陷或筛选出预计具有不良性质的分子。虽然这很有用,但这只是此类模型的最基本应用。在这里,我们将展示如何使用模型“超越分析”,以指导药物发现中的关键决策。例如,选择具有信心的化学系列来集中资源,或设计针对结构修饰的改进分子以提高关键性质。为了对分子和化学系列进行优先级排序,必须定义对属性的成功标准及其对项目目标的相对重要性。然后,可以使用来自模型(实验或预测)的数据来评估每个分子的属性与这些要求的平衡。但是,为了做出有信心的决策,还必须考虑所有数据中的不确定性。基于计算机的模型编码了有关分子结构与属性之间关系的信息。这用于预测新分子的属性值。但是,进一步的解释可以提供有关分子中不同基团对属性的贡献以及属性对结构变化的敏感性的信息。可视化此信息可以指导重新设计过程。在本文中,我们描述了实现这些目标并推动药物发现决策的方法,并通过实际示例说明了结果。