Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
J Biol Chem. 2010 Jan 29;285(5):3341-50. doi: 10.1074/jbc.M109.063784. Epub 2009 Nov 23.
Methylation of specific histone residues is capable of both gene activation and silencing. Despite vast work on the function of methylation, most studies either present a static snapshot of methylation or fail to assign kinetic information to specific residues. Using liquid chromatography-tandem mass spectrometry on a high-resolution mass spectrometer and heavy methyl-SILAC labeling, we studied site-specific histone lysine and arginine methylation dynamics. The detection of labeled intermediates within a methylation state revealed that mono-, di-, and trimethylated residues generally have progressively slower rates of formation. Furthermore, methylations associated with active genes have faster rates than methylations associated with silent genes. Finally, the presence of both an active and silencing mark on the same peptide results in a slower rate of methylation than the presence of either mark alone. Here we show that quantitative proteomic approaches such as this can determine the dynamics of multiple methylated residues, an understudied portion of histone biology.
组蛋白特定残基的甲基化既能激活基因,也能使其沉默。尽管人们对甲基化的功能进行了广泛的研究,但大多数研究要么呈现了甲基化的静态快照,要么未能将动态信息分配给特定残基。我们使用高分辨率质谱仪上的液相色谱-串联质谱和重甲基-SILAC 标记,研究了特定位置的组蛋白赖氨酸和精氨酸甲基化动力学。在一个甲基化状态下检测到标记的中间体表明,单、二和三甲基化残基的形成速度通常逐渐减慢。此外,与活跃基因相关的甲基化比与沉默基因相关的甲基化具有更快的速率。最后,同一肽上既有活性标记又有沉默标记会导致甲基化速度比单独存在任何一种标记都慢。在这里,我们展示了这种定量蛋白质组学方法可以确定多个甲基化残基的动力学,这是组蛋白生物学中一个研究较少的部分。