Suppr超能文献

纵向有序数据和竞争风险生存时间的联合建模及 NINDS rt-PA 中风试验分析。

Joint modeling of longitudinal ordinal data and competing risks survival times and analysis of the NINDS rt-PA stroke trial.

机构信息

Department of Epidemiology and Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610-0231, USA.

出版信息

Stat Med. 2010 Feb 28;29(5):546-57. doi: 10.1002/sim.3798.

Abstract

Existing joint models for longitudinal and survival data are not applicable for longitudinal ordinal outcomes with possible non-ignorable missing values caused by multiple reasons. We propose a joint model for longitudinal ordinal measurements and competing risks failure time data, in which a partial proportional odds model for the longitudinal ordinal outcome is linked to the event times by latent random variables. At the survival endpoint, our model adopts the competing risks framework to model multiple failure types at the same time. The partial proportional odds model, as an extension of the popular proportional odds model for ordinal outcomes, is more flexible and at the same time provides a tool to test the proportional odds assumption. We use a likelihood approach and derive an EM algorithm to obtain the maximum likelihood estimates of the parameters. We further show that all the parameters at the survival endpoint are identifiable from the data. Our joint model enables one to make inference for both the longitudinal ordinal outcome and the failure times simultaneously. In addition, the inference at the longitudinal endpoint is adjusted for possible non-ignorable missing data caused by the failure times. We apply the method to the NINDS rt-PA stroke trial. Our study considers the modified Rankin Scale only. Other ordinal outcomes in the trial, such as the Barthel and Glasgow scales, can be treated in the same way.

摘要

现有的纵向和生存数据联合模型不适用于由于多种原因导致的可能不可忽略缺失值的纵向有序结局。我们提出了一种用于纵向有序测量和竞争风险失效时间数据的联合模型,其中纵向有序结局的部分比例优势模型通过潜在随机变量与事件时间相关联。在生存终点,我们的模型采用竞争风险框架同时对多种失效类型进行建模。部分比例优势模型作为常用的有序结局比例优势模型的扩展,更加灵活,同时提供了检验比例优势假设的工具。我们使用似然方法并推导出 EM 算法来获得参数的最大似然估计。我们进一步表明,生存终点的所有参数都可以从数据中识别出来。我们的联合模型能够同时对纵向有序结局和失效时间进行推断。此外,在纵向终点的推断考虑了由于失效时间引起的可能不可忽略缺失数据的调整。我们将该方法应用于 NINDS rt-PA 中风试验。我们的研究仅考虑改良 Rankin 量表。试验中的其他有序结局,如 Barthel 和 Glasgow 量表,可以采用相同的方法进行处理。

相似文献

2
Regression analysis of ordinal stroke clinical trial outcomes: an application to the NINDS t-PA trial.
Int J Stroke. 2014 Feb;9(2):226-31. doi: 10.1111/ijs.12052. Epub 2013 Jun 27.
3
A joint model for longitudinal measurements and survival data in the presence of multiple failure types.
Biometrics. 2008 Sep;64(3):762-771. doi: 10.1111/j.1541-0420.2007.00952.x. Epub 2007 Dec 20.
4
Joint modelling of longitudinal ordinal and multi-state data.
Stat Methods Med Res. 2024 Nov;33(11-12):1939-1951. doi: 10.1177/09622802241281013. Epub 2024 Nov 5.
9
Repeated-measures analysis of the National Institute of Neurological Disorders and Stroke rt-PA stroke trial.
J Stroke Cerebrovasc Dis. 2011 May-Jun;20(3):241-6. doi: 10.1016/j.jstrokecerebrovasdis.2010.01.003. Epub 2010 Jul 10.
10
A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects.
Lifetime Data Anal. 2011 Jan;17(1):80-100. doi: 10.1007/s10985-010-9169-6. Epub 2010 Jun 12.

引用本文的文献

4
An efficient estimation approach to joint modeling of longitudinal and survival data.
J Appl Stat. 2022 Jul 25;50(15):3031-3047. doi: 10.1080/02664763.2022.2096209. eCollection 2023.
6
Repeated Measures of Modified Rankin Scale Scores to Assess Functional Recovery From Stroke: AFFINITY Study Findings.
J Am Heart Assoc. 2022 Aug 16;11(16):e025425. doi: 10.1161/JAHA.121.025425. Epub 2022 Aug 5.
7
A semiparametric joint model for terminal trend of quality of life and survival in palliative care research.
Stat Med. 2017 Dec 20;36(29):4692-4704. doi: 10.1002/sim.7445. Epub 2017 Aug 17.
9
Analyzing mHealth Engagement: Joint Models for Intensively Collected User Engagement Data.
JMIR Mhealth Uhealth. 2017 Jan 12;5(1):e1. doi: 10.2196/mhealth.6474.
10
Bayesian joint ordinal and survival modeling for breast cancer risk assessment.
Stat Med. 2016 Dec 10;35(28):5267-5282. doi: 10.1002/sim.7065. Epub 2016 Aug 14.

本文引用的文献

2
A joint model for longitudinal measurements and survival data in the presence of multiple failure types.
Biometrics. 2008 Sep;64(3):762-771. doi: 10.1111/j.1541-0420.2007.00952.x. Epub 2007 Dec 20.
3
A general class of pattern mixture models for nonignorable dropout with many possible dropout times.
Biometrics. 2008 Jun;64(2):538-45. doi: 10.1111/j.1541-0420.2007.00884.x. Epub 2007 Sep 26.
6
Joint modelling of longitudinal measurements and event time data.
Biostatistics. 2000 Dec;1(4):465-80. doi: 10.1093/biostatistics/1.4.465.
7
Analysis of longitudinal substance use outcomes using ordinal random-effects regression models.
Addiction. 2000 Nov;95 Suppl 3:S381-94. doi: 10.1080/09652140020004296.
9
Tissue plasminogen activator for acute ischemic stroke.
N Engl J Med. 1995 Dec 14;333(24):1581-7. doi: 10.1056/NEJM199512143332401.
10
A nonidentifiability aspect of the problem of competing risks.
Proc Natl Acad Sci U S A. 1975 Jan;72(1):20-2. doi: 10.1073/pnas.72.1.20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验