Department of Epidemiology and Biostatistics, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610-0231, USA.
Stat Med. 2010 Feb 28;29(5):546-57. doi: 10.1002/sim.3798.
Existing joint models for longitudinal and survival data are not applicable for longitudinal ordinal outcomes with possible non-ignorable missing values caused by multiple reasons. We propose a joint model for longitudinal ordinal measurements and competing risks failure time data, in which a partial proportional odds model for the longitudinal ordinal outcome is linked to the event times by latent random variables. At the survival endpoint, our model adopts the competing risks framework to model multiple failure types at the same time. The partial proportional odds model, as an extension of the popular proportional odds model for ordinal outcomes, is more flexible and at the same time provides a tool to test the proportional odds assumption. We use a likelihood approach and derive an EM algorithm to obtain the maximum likelihood estimates of the parameters. We further show that all the parameters at the survival endpoint are identifiable from the data. Our joint model enables one to make inference for both the longitudinal ordinal outcome and the failure times simultaneously. In addition, the inference at the longitudinal endpoint is adjusted for possible non-ignorable missing data caused by the failure times. We apply the method to the NINDS rt-PA stroke trial. Our study considers the modified Rankin Scale only. Other ordinal outcomes in the trial, such as the Barthel and Glasgow scales, can be treated in the same way.
现有的纵向和生存数据联合模型不适用于由于多种原因导致的可能不可忽略缺失值的纵向有序结局。我们提出了一种用于纵向有序测量和竞争风险失效时间数据的联合模型,其中纵向有序结局的部分比例优势模型通过潜在随机变量与事件时间相关联。在生存终点,我们的模型采用竞争风险框架同时对多种失效类型进行建模。部分比例优势模型作为常用的有序结局比例优势模型的扩展,更加灵活,同时提供了检验比例优势假设的工具。我们使用似然方法并推导出 EM 算法来获得参数的最大似然估计。我们进一步表明,生存终点的所有参数都可以从数据中识别出来。我们的联合模型能够同时对纵向有序结局和失效时间进行推断。此外,在纵向终点的推断考虑了由于失效时间引起的可能不可忽略缺失数据的调整。我们将该方法应用于 NINDS rt-PA 中风试验。我们的研究仅考虑改良 Rankin 量表。试验中的其他有序结局,如 Barthel 和 Glasgow 量表,可以采用相同的方法进行处理。