Biostatistics and Bioinformatics Division, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
Stat Med. 2012 Jul 20;31(16):1707-21. doi: 10.1002/sim.4507. Epub 2012 Feb 17.
We propose a semiparametric joint model for bivariate longitudinal ordinal outcomes and competing risks failure time data. The association between the longitudinal and survival endpoints is captured by latent random effects. This approach generalizes previous joint analysis that considers only one response variable at the longitudinal endpoint. One unique feature of the proposed model is that we relax the commonly used normality assumption for random effects and leave the distribution completely unspecified. We use a modified version of the vertex exchange method in conjunction with an expectation-maximization algorithm to estimate the random effects distribution and model parameters. We show via simulations that robust parameter estimates are obtained from the proposed method under various scenarios. We illustrate the approach using cough severity and frequency data from a scleroderma lung study.
我们提出了一个用于双变量纵向有序结局和竞争风险失效时间数据的半参数联合模型。纵向和生存终点之间的关联通过潜在随机效应来捕获。这种方法推广了以前仅在纵向终点考虑一个响应变量的联合分析。所提出模型的一个独特特征是,我们放宽了常用的随机效应正态性假设,并完全不指定分布。我们使用顶点交换方法的修改版本与期望最大化算法相结合来估计随机效应分布和模型参数。我们通过模拟表明,在各种情况下,所提出的方法都可以得到稳健的参数估计。我们使用硬皮病肺研究中的咳嗽严重程度和频率数据来说明该方法。