Suppr超能文献

电荷对相互作用控制神经元型一氧化氮合酶中 FMN 结构域的构象设定点和运动。

Charge-pairing interactions control the conformational setpoint and motions of the FMN domain in neuronal nitric oxide synthase.

机构信息

Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH 44195, USA.

出版信息

Biochem J. 2013 Mar 15;450(3):607-17. doi: 10.1042/BJ20121488.

Abstract

The NOS (nitric oxide synthase; EC 1.14.13.39) enzymes contain a C-terminal flavoprotein domain [NOSred (reductase domain of NOS)] that binds FAD and FMN, and an N-terminal oxygenase domain that binds haem. Evidence suggests that the FMN-binding domain undergoes large conformational motions to shuttle electrons between the NADPH/FAD-binding domain [FNR (ferredoxin NADP-reductase)] and the oxygenase domain. Previously we have shown that three residues on the FMN domain (Glu762, Glu816 and Glu819) that make charge-pairing interactions with the FNR help to slow electron flux through nNOSred (neuronal NOSred). In the present study, we show that charge neutralization or reversal at each of these residues alters the setpoint [Keq(A)] of the NOSred conformational equilibrium to favour the open (FMN-deshielded) conformational state. Moreover, computer simulations of the kinetic traces of cytochrome c reduction by the mutants suggest that they have higher conformational transition rates (1.5-4-fold) and rates of interflavin electron transfer (1.5-2-fold) relative to wild-type nNOSred. We conclude that the three charge-pairing residues on the FMN domain govern electron flux through nNOSred by stabilizing its closed (FMN-shielded) conformational state and by retarding the rate of conformational switching between its open and closed conformations.

摘要

NOS(一氧化氮合酶;EC 1.14.13.39)酶包含一个 C 末端黄素蛋白结构域[NOSred(NOS 的还原酶结构域)],该结构域结合 FAD 和 FMN,以及一个 N 末端加氧酶结构域,该结构域结合血红素。有证据表明,FMN 结合结构域会发生较大的构象运动,从而在 NADPH/FAD 结合结构域[FNR(铁氧还蛋白 NADP 还原酶)]和加氧酶结构域之间传递电子。先前我们已经表明,FMN 结构域上的三个残基(Glu762、Glu816 和 Glu819)与 FNR 形成电荷配对相互作用,有助于减缓 nNOSred(神经元型 NOSred)中的电子流。在本研究中,我们表明,这些残基中的每一个的电荷中和或反转都会改变 NOSred 构象平衡的设定点[Keq(A)],有利于开放(FMN 去屏蔽)构象状态。此外,对突变体的细胞色素 c 还原的动力学轨迹的计算机模拟表明,它们具有更高的构象转变速率(1.5-4 倍)和黄素间电子转移速率(1.5-2 倍),与野生型 nNOSred 相比。我们得出的结论是,FMN 结构域上的三个电荷配对残基通过稳定其封闭(FMN 屏蔽)构象状态并延迟其开放和封闭构象之间的构象转换速率,从而控制 nNOSred 中的电子流。

相似文献

5
A cross-domain charge interaction governs the activity of NO synthase.
J Biol Chem. 2018 Mar 23;293(12):4545-4554. doi: 10.1074/jbc.RA117.000635. Epub 2018 Feb 2.
7
Heat shock protein 90 enhances the electron transfer between the FMN and heme cofactors in neuronal nitric oxide synthase.
FEBS Lett. 2020 Sep;594(17):2904-2913. doi: 10.1002/1873-3468.13870. Epub 2020 Jul 4.
8
9
Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase.
Biochemistry. 2009 May 12;48(18):3864-76. doi: 10.1021/bi8021087.

引用本文的文献

1
Redox-Regulation of α-Globin in Vascular Physiology.
Antioxidants (Basel). 2022 Jan 14;11(1):159. doi: 10.3390/antiox11010159.
2
Conformational states and fluctuations in endothelial nitric oxide synthase under calmodulin regulation.
Biophys J. 2021 Dec 7;120(23):5196-5206. doi: 10.1016/j.bpj.2021.11.001. Epub 2021 Nov 6.
3
Nitric oxide synthase enzymology in the 20 years after the Nobel Prize.
Br J Pharmacol. 2019 Jan;176(2):177-188. doi: 10.1111/bph.14533. Epub 2018 Dec 9.
4
Deciphering mechanism of conformationally controlled electron transfer in nitric oxide synthases.
Front Biosci (Landmark Ed). 2018 Jun 1;23(10):1803-1821. doi: 10.2741/4674.
5
A cross-domain charge interaction governs the activity of NO synthase.
J Biol Chem. 2018 Mar 23;293(12):4545-4554. doi: 10.1074/jbc.RA117.000635. Epub 2018 Feb 2.
7
Phosphorylation Controls Endothelial Nitric-oxide Synthase by Regulating Its Conformational Dynamics.
J Biol Chem. 2016 Oct 28;291(44):23047-23057. doi: 10.1074/jbc.M116.737361. Epub 2016 Sep 9.
8
Elucidating nitric oxide synthase domain interactions by molecular dynamics.
Protein Sci. 2016 Feb;25(2):374-82. doi: 10.1002/pro.2824. Epub 2015 Oct 22.
10

本文引用的文献

1
Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions.
Coord Chem Rev. 2012 Feb 1;256(3-4):393-411. doi: 10.1016/j.ccr.2011.10.011. Epub 2011 Oct 17.
4
Conformation-dependent hydride transfer in neuronal nitric oxide synthase reductase domain.
FEBS J. 2010 Sep;277(18):3833-43. doi: 10.1111/j.1742-4658.2010.07787.x. Epub 2010 Aug 16.
5
Surface charges and regulation of FMN to heme electron transfer in nitric-oxide synthase.
J Biol Chem. 2010 Aug 27;285(35):27232-27240. doi: 10.1074/jbc.M110.138842. Epub 2010 Jun 30.
6
NO synthase: structures and mechanisms.
Nitric Oxide. 2010 Aug 1;23(1):1-11. doi: 10.1016/j.niox.2010.03.001. Epub 2010 Mar 18.
8
Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain.
FEBS J. 2009 Aug;276(15):3959-74. doi: 10.1111/j.1742-4658.2009.07120.x. Epub 2009 Jul 3.
10
Regulation of FMN subdomain interactions and function in neuronal nitric oxide synthase.
Biochemistry. 2009 May 12;48(18):3864-76. doi: 10.1021/bi8021087.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验