Department of Pathobiology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH 44195, USA.
Biochem J. 2013 Mar 15;450(3):607-17. doi: 10.1042/BJ20121488.
The NOS (nitric oxide synthase; EC 1.14.13.39) enzymes contain a C-terminal flavoprotein domain [NOSred (reductase domain of NOS)] that binds FAD and FMN, and an N-terminal oxygenase domain that binds haem. Evidence suggests that the FMN-binding domain undergoes large conformational motions to shuttle electrons between the NADPH/FAD-binding domain [FNR (ferredoxin NADP-reductase)] and the oxygenase domain. Previously we have shown that three residues on the FMN domain (Glu762, Glu816 and Glu819) that make charge-pairing interactions with the FNR help to slow electron flux through nNOSred (neuronal NOSred). In the present study, we show that charge neutralization or reversal at each of these residues alters the setpoint [Keq(A)] of the NOSred conformational equilibrium to favour the open (FMN-deshielded) conformational state. Moreover, computer simulations of the kinetic traces of cytochrome c reduction by the mutants suggest that they have higher conformational transition rates (1.5-4-fold) and rates of interflavin electron transfer (1.5-2-fold) relative to wild-type nNOSred. We conclude that the three charge-pairing residues on the FMN domain govern electron flux through nNOSred by stabilizing its closed (FMN-shielded) conformational state and by retarding the rate of conformational switching between its open and closed conformations.
NOS(一氧化氮合酶;EC 1.14.13.39)酶包含一个 C 末端黄素蛋白结构域[NOSred(NOS 的还原酶结构域)],该结构域结合 FAD 和 FMN,以及一个 N 末端加氧酶结构域,该结构域结合血红素。有证据表明,FMN 结合结构域会发生较大的构象运动,从而在 NADPH/FAD 结合结构域[FNR(铁氧还蛋白 NADP 还原酶)]和加氧酶结构域之间传递电子。先前我们已经表明,FMN 结构域上的三个残基(Glu762、Glu816 和 Glu819)与 FNR 形成电荷配对相互作用,有助于减缓 nNOSred(神经元型 NOSred)中的电子流。在本研究中,我们表明,这些残基中的每一个的电荷中和或反转都会改变 NOSred 构象平衡的设定点[Keq(A)],有利于开放(FMN 去屏蔽)构象状态。此外,对突变体的细胞色素 c 还原的动力学轨迹的计算机模拟表明,它们具有更高的构象转变速率(1.5-4 倍)和黄素间电子转移速率(1.5-2 倍),与野生型 nNOSred 相比。我们得出的结论是,FMN 结构域上的三个电荷配对残基通过稳定其封闭(FMN 屏蔽)构象状态并延迟其开放和封闭构象之间的构象转换速率,从而控制 nNOSred 中的电子流。