Liu Chunlei, Mang Sarah C, Moseley Michael E
Brain Imaging and Analysis Center, Duke University, Durham, North Carolina 27705, USA.
Magn Reson Med. 2010 Jan;63(1):243-52. doi: 10.1002/mrm.22192.
Generalized diffusion tensor imaging (GDTI) using higher-order tensor (HOT) statistics generalizes the technique of diffusion tensor imaging by including the effect of nongaussian diffusion on the signal of MRI. In GDTI-HOT, the effect of nongaussian diffusion is characterized by higher-order tensor statistics (i.e., the cumulant tensors or the moment tensors), such as the covariance matrix (the second-order cumulant tensor), the skewness tensor (the third-order cumulant tensor), and the kurtosis tensor (the fourth-order cumulant tensor). Previously, Monte Carlo simulations have been applied to verify the validity of this technique in reconstructing complicated fiber structures. However, no in vivo implementation of GDTI-HOT has been reported. The primary goal of this study is to establish GDTI-HOT as a feasible in vivo technique for imaging nongaussian diffusion. We show that probability distribution function of the molecular diffusion process can be measured in vivo with GDTI-HOT and be visualized with three-dimensional glyphs. By comparing GDTI-HOT to fiber structures that are revealed by the highest resolution diffusion-weighted imaging (DWI) possible in vivo, we show that the GDTI-HOT can accurately predict multiple fiber orientations within one white matter voxel. Furthermore, through bootstrap analysis we demonstrate that in vivo measurement of HOT elements is reproducible, with a small statistical variation that is similar to that of diffusion tensor imaging.
使用高阶张量(HOT)统计的广义扩散张量成像(GDTI)通过纳入非高斯扩散对磁共振成像(MRI)信号的影响,推广了扩散张量成像技术。在GDTI - HOT中,非高斯扩散的影响由高阶张量统计(即累积量张量或矩张量)来表征,例如协方差矩阵(二阶累积量张量)、偏度张量(三阶累积量张量)和峰度张量(四阶累积量张量)。此前,蒙特卡罗模拟已被用于验证该技术在重建复杂纤维结构方面的有效性。然而,尚未有GDTI - HOT在活体中的应用报道。本研究的主要目标是将GDTI - HOT确立为一种可行的用于成像非高斯扩散的活体技术。我们表明,分子扩散过程的概率分布函数可以通过GDTI - HOT在活体中测量,并通过三维图标进行可视化。通过将GDTI - HOT与活体中可能的最高分辨率扩散加权成像(DWI)所揭示的纤维结构进行比较,我们表明GDTI - HOT可以准确预测一个白质体素内的多个纤维方向。此外,通过自助法分析我们证明,HOT元素的活体测量是可重复的,其统计变化较小,与扩散张量成像的情况类似。