Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
Lund University, Lund, Sweden.
Sci Rep. 2021 Jan 8;11(1):135. doi: 10.1038/s41598-020-79748-3.
Probing the cellular structure of in vivo biological tissue is a fundamental problem in biomedical imaging and medical science. This work introduces an approach for analyzing diffusion magnetic resonance imaging data acquired by the novel tensor-valued encoding technique for characterizing tissue microstructure. Our approach first uses a signal model to estimate the variance and skewness of the distribution of apparent diffusion tensors modeling the underlying tissue. Then several novel imaging indices, such as weighted microscopic anisotropy and microscopic skewness, are derived to characterize different ensembles of diffusion processes that are indistinguishable by existing techniques. The contributions of this work also include a theoretical proof that shows that, to estimate the skewness of a diffusion tensor distribution, the encoding protocol needs to include full-rank tensor diffusion encoding. This proof provides a guideline for the application of this technique. The properties of the proposed indices are illustrated using both synthetic data and in vivo data acquired from a human brain.
研究活体内生物组织的细胞结构是生物医学成像和医学领域的一个基本问题。本工作介绍了一种分析扩散磁共振成像数据的方法,该方法基于新型张量值编码技术,用于描述组织的微观结构。我们的方法首先使用信号模型来估计表观扩散张量分布的方差和偏度,这些张量模型用于模拟基础组织。然后,推导出几个新的成像指标,如加权微观各向异性和微观偏度,用于描述不同的扩散过程集合,这些集合是现有技术无法区分的。本工作的贡献还包括一个理论证明,表明为了估计扩散张量分布的偏度,编码方案需要包括全秩张量扩散编码。该证明为该技术的应用提供了指导。使用合成数据和从人脑采集的体内数据说明了所提出的指标的特性。