Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.
Magn Reson Med. 2018 Jan;79(1):180-194. doi: 10.1002/mrm.26656. Epub 2017 May 7.
We propose a new generalized diffusion tensor imaging (GDTI) experimental design and analysis framework for efficiently measuring orientationally averaged diffusion-weighted images (DWIs), which remove bulk signal modulations attributed to diffusion anisotropy and quantify isotropic higher-order diffusion tensors (HOT). We illustrate how this framework accelerates the clinical measurement of rotation-invariant tissue microstructural parameters derived from HOT, such as the HOT-Trace and the mean t-kurtosis.
For a large range of b-values, we compare orientationally averaged DWIs measured with high angular resolution diffusion imaging to those obtained with the proposed isotropic GDTI (IGDTI) experimental design. We compare rotation-invariant microstructural parameters measured with IGDTI to those derived from HOTs measured explicitly with GDTI.
In both fixed-brain microimaging and in vivo clinical experiments, IGDTI accurately quantifies mean apparent diffusion coefficient (mADC)-weighted DWIs over a wide range of b-values and allows efficient computation of HOT-derived scalar tissue parameters from a small number of DWIs.
IGDTI provides direct and accurate estimates of orientationally averaged tissue water mobilities over a wide range of b-values. This efficient method may enable new, sensitive, and quantitative assessments for clinical applications in which changes in mADC can be observe,d such as detecting and characterizing stroke, cancers, and neurodegenerative diseases. Magn Reson Med 79:180-194, 2018. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
我们提出了一种新的广义扩散张量成像(GDTI)实验设计和分析框架,用于有效地测量各向同性平均扩散加权图像(DWIs),这些图像消除了归因于扩散各向异性的体信号调制,并量化各向同性高阶扩散张量(HOT)。我们说明了该框架如何加速从 HOT 得出的旋转不变组织微观结构参数的临床测量,例如 HOT-Trace 和平均 t-峰度。
对于很大的 b 值范围,我们将用高角度分辨率扩散成像测量的各向同性平均 DWI 与用我们提出的各向同性 GDTI(IGDTI)实验设计获得的 DWI 进行比较。我们将用 IGDTI 测量的旋转不变微观结构参数与用 GDTI 明确测量的 HOT 得出的参数进行比较。
在固定脑微成像和体内临床实验中,IGDTI 在很宽的 b 值范围内准确地量化了平均表观扩散系数(mADC)加权 DWI,并允许从少量 DWI 高效计算 HOT 衍生的标量组织参数。
IGDTI 提供了各向同性组织水流动性在很宽的 b 值范围内的直接和准确估计。这种高效的方法可能为临床应用提供新的、敏感的、定量的评估,例如检测和表征中风、癌症和神经退行性疾病,在这些应用中可以观察到 mADC 的变化。磁共振医学 79:180-194,2018. 出版 2017. 本文是美国政府的工作,在美国属于公有领域。