Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21906-11. doi: 10.1073/pnas.0912022106. Epub 2009 Dec 2.
Dendritic integration of excitatory and inhibitory inputs is critical for neuronal computation, but the underlying rules remain to be elucidated. Based on realistic modeling and experiments in rat hippocampal slices, we derived a simple arithmetic rule for spatial summation of concurrent excitatory glutamatergic inputs (E) and inhibitory GABAergic inputs (I). The somatic response can be well approximated as the sum of the excitatory postsynaptic potential (EPSP), the inhibitory postsynaptic potential (IPSP), and a nonlinear term proportional to their product (kEPSPIPSP), where the coefficient k reflects the strength of shunting effect. The k value shows a pronounced asymmetry in its dependence on E and I locations. For I on the dendritic trunk, k decays rapidly with E-I distance for proximal Es, but remains largely constant for distal Es, indicating a uniformly high shunting efficacy for all distal Es. For I on an oblique branch, the shunting effect is restricted mainly within the branch, with the same proximal/distal asymmetry. This asymmetry can be largely attributed to cable properties of the dendrite. Further modeling studies showed that this rule also applies to the integration of multiple coincident Es and Is. Thus, this arithmetic rule offers a simple analytical tool for studying E-I integration in pyramidal neurons that incorporates the location specificity of GABAergic shunting inhibition.
兴奋性和抑制性输入的树突整合对于神经元计算至关重要,但基础规则仍有待阐明。基于大鼠海马脑片的现实建模和实验,我们推导出了一个用于并发兴奋性谷氨酸能输入(E)和抑制性 GABA 能输入(I)空间总和的简单算术规则。体反应可以很好地近似为兴奋性突触后电位(EPSP)、抑制性突触后电位(IPSP)和与它们乘积成正比的非线性项(kEPSPIPSP)之和,其中系数 k 反映了分流效应的强度。k 值在其对 E 和 I 位置的依赖性方面表现出明显的不对称性。对于树突干上的 I,k 随 E-I 距离的增加而迅速衰减,但对于远端 Es 则基本保持不变,表明所有远端 Es 的分流效率均很高。对于斜枝上的 I,分流效应主要局限于分支内,具有相同的近端/远端不对称性。这种不对称性在很大程度上可以归因于树突的电缆性质。进一步的建模研究表明,该规则也适用于多个并发 Es 和 Is 的整合。因此,这个算术规则为研究包含 GABA 能分流抑制的位置特异性的锥体神经元中的 E-I 整合提供了一个简单的分析工具。