Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America.
Department of Neurology, Baylor College of Medicine, Houston, Texas, United States of America.
PLoS Biol. 2024 Jan 31;22(1):e3002483. doi: 10.1371/journal.pbio.3002483. eCollection 2024 Jan.
Synaptic transmission mediated by GABAA receptors (GABAARs) in adult, principal striatal spiny projection neurons (SPNs) can suppress ongoing spiking, but its effect on synaptic integration at subthreshold membrane potentials is less well characterized, particularly those near the resting down-state. To fill this gap, a combination of molecular, optogenetic, optical, and electrophysiological approaches were used to study SPNs in mouse ex vivo brain slices, and computational tools were used to model somatodendritic synaptic integration. In perforated patch recordings, activation of GABAARs, either by uncaging of GABA or by optogenetic stimulation of GABAergic synapses, evoked currents with a reversal potential near -60 mV in both juvenile and adult SPNs. Transcriptomic analysis and pharmacological work suggested that this relatively positive GABAAR reversal potential was not attributable to NKCC1 expression, but rather to HCO3- permeability. Regardless, from down-state potentials, optogenetic activation of dendritic GABAergic synapses depolarized SPNs. This GABAAR-mediated depolarization summed with trailing ionotropic glutamate receptor (iGluR) stimulation, promoting dendritic spikes and increasing somatic depolarization. Simulations revealed that a diffuse dendritic GABAergic input to SPNs effectively enhanced the response to dendritic iGluR signaling and promoted dendritic spikes. Taken together, our results demonstrate that GABAARs can work in concert with iGluRs to excite adult SPNs when they are in the resting down-state, suggesting that their inhibitory role is limited to brief periods near spike threshold. This state-dependence calls for a reformulation for the role of intrastriatal GABAergic circuits.
GABAA 受体(GABAARs)介导的突触传递可抑制成年纹状体主棘突投射神经元(SPNs)的持续放电,但它对亚阈膜电位下突触整合的影响还不太清楚,尤其是在静息去极化状态附近。为了填补这一空白,采用了分子、光遗传学、光学和电生理学方法的组合,在离体小鼠脑片上研究 SPNs,并使用计算工具来模拟树突体突触整合。在穿孔贴片记录中,通过 GABA 的光解或 GABA 能突触的光遗传学刺激激活 GABAARs,在幼年和成年 SPNs 中均引起接近 -60 mV 的反转电位的电流。转录组分析和药理学研究表明,这种相对正的 GABAAR 反转电位不是由于 NKCC1 的表达,而是由于 HCO3- 的通透性。无论如何,从去极化状态下的电位来看,树突 GABA 能突触的光遗传学激活使 SPNs 去极化。这种 GABAAR 介导的去极化与随后的离子型谷氨酸受体(iGluR)刺激叠加,促进树突棘发放,并增加体细胞去极化。模拟结果表明,弥散的树突 GABA 能传入有效地增强了对树突 iGluR 信号的反应,并促进了树突棘发放。综上所述,我们的研究结果表明,当 SPNs 处于静息去极化状态时,GABAARs 可以与 iGluRs 协同作用来兴奋成年 SPNs,这表明它们的抑制作用仅限于接近尖峰阈值的短暂时间。这种状态依赖性要求对纹状体 GABA 能回路的作用进行重新表述。