Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
Proc Natl Acad Sci U S A. 2009 Dec 15;106(50):21109-14. doi: 10.1073/pnas.0908640106. Epub 2009 Dec 2.
The catalytic mechanism of DNA polymerases involves multiple steps that precede and follow the transfer of a nucleotide to the 3'-hydroxyl of the growing DNA chain. Here we report a single-molecule approach to monitor the movement of E. coli DNA polymerase I (Klenow fragment) on a DNA template during DNA synthesis with single base-pair resolution. As each nucleotide is incorporated, the single-molecule Förster resonance energy transfer intensity drops in discrete steps to values consistent with single-nucleotide incorporations. Purines and pyrimidines are incorporated with comparable rates. A mismatched primer/template junction exhibits dynamics consistent with the primer moving into the exonuclease domain, which was used to determine the fraction of primer-termini bound to the exonuclease and polymerase sites. Most interestingly, we observe a structural change after the incorporation of a correctly paired nucleotide, consistent with transient movement of the polymerase past the preinsertion site or a conformational change in the polymerase. This may represent a previously unobserved step in the mechanism of DNA synthesis that could be part of the proofreading process.
DNA 聚合酶的催化机制涉及多个步骤,这些步骤发生在核苷酸转移到生长 DNA 链的 3'-羟基之前和之后。在这里,我们报告了一种单分子方法,用于在 DNA 合成过程中以单碱基对分辨率监测大肠杆菌 DNA 聚合酶 I(Klenow 片段)在 DNA 模板上的运动。当每个核苷酸被掺入时,单分子Förster 共振能量转移强度会以离散的步骤下降到与单核苷酸掺入一致的值。嘌呤和嘧啶以可比的速率掺入。不匹配的引物/模板接头表现出与引物进入外切酶结构域一致的动力学,这用于确定与外切酶和聚合酶位点结合的引物末端的分数。最有趣的是,我们在掺入正确配对的核苷酸后观察到结构变化,这与聚合酶在插入前位置的短暂移动或聚合酶的构象变化一致。这可能代表 DNA 合成机制中以前未观察到的步骤,可能是校对过程的一部分。