School of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany.
PLoS Comput Biol. 2009 Nov;5(11):e1000577. doi: 10.1371/journal.pcbi.1000577. Epub 2009 Nov 26.
Simultaneous spike-counts of neural populations are typically modeled by a Gaussian distribution. On short time scales, however, this distribution is too restrictive to describe and analyze multivariate distributions of discrete spike-counts. We present an alternative that is based on copulas and can account for arbitrary marginal distributions, including Poisson and negative binomial distributions as well as second and higher-order interactions. We describe maximum likelihood-based procedures for fitting copula-based models to spike-count data, and we derive a so-called flashlight transformation which makes it possible to move the tail dependence of an arbitrary copula into an arbitrary orthant of the multivariate probability distribution. Mixtures of copulas that combine different dependence structures and thereby model different driving processes simultaneously are also introduced. First, we apply copula-based models to populations of integrate-and-fire neurons receiving partially correlated input and show that the best fitting copulas provide information about the functional connectivity of coupled neurons which can be extracted using the flashlight transformation. We then apply the new method to data which were recorded from macaque prefrontal cortex using a multi-tetrode array. We find that copula-based distributions with negative binomial marginals provide an appropriate stochastic model for the multivariate spike-count distributions rather than the multivariate Poisson latent variables distribution and the often used multivariate normal distribution. The dependence structure of these distributions provides evidence for common inhibitory input to all recorded stimulus encoding neurons. Finally, we show that copula-based models can be successfully used to evaluate neural codes, e.g., to characterize stimulus-dependent spike-count distributions with information measures. This demonstrates that copula-based models are not only a versatile class of models for multivariate distributions of spike-counts, but that those models can be exploited to understand functional dependencies.
神经群体的同时尖峰计数通常通过高斯分布来建模。然而,在短时间尺度上,这种分布过于严格,无法描述和分析离散尖峰计数的多元分布。我们提出了一种替代方法,该方法基于 copula,可以解释任意的边缘分布,包括泊松分布和负二项式分布以及二阶和更高阶的相互作用。我们描述了基于最大似然的方法,将基于 copula 的模型拟合到尖峰计数数据中,并且我们推导出了所谓的闪光灯变换,该变换使得可以将任意 copula 的尾部相关性移动到多元概率分布的任意半轴中。混合 copula 也被引入,这些 copula 结合了不同的依赖结构,从而同时模拟不同的驱动过程。首先,我们将基于 copula 的模型应用于接收部分相关输入的整合和触发神经元群体,并且表明,最佳拟合的 copula 提供了有关耦合神经元功能连接的信息,该信息可以使用闪光灯变换提取。然后,我们将新方法应用于从猕猴前额皮质使用多电极阵列记录的数据。我们发现,具有负二项式边缘的 copula 分布为多元尖峰计数分布提供了适当的随机模型,而不是多元泊松潜在变量分布和常用的多元正态分布。这些分布的依赖结构为记录的所有刺激编码神经元的共同抑制输入提供了证据。最后,我们表明,基于 copula 的模型可以成功地用于评估神经码,例如,使用信息度量来表征与刺激相关的尖峰计数分布。这表明,基于 copula 的模型不仅是多元尖峰计数分布的一类多功能模型,而且这些模型可以被利用来理解功能依赖性。