Institute for Theoretical Biology, Humboldt University, Berlin, Germany.
PLoS Comput Biol. 2009 Nov;5(11):e1000580. doi: 10.1371/journal.pcbi.1000580. Epub 2009 Nov 26.
Bioluminescence techniques allow accurate monitoring of the circadian clock in single cells. We have analyzed bioluminescence data of Per gene expression in mouse SCN neurons and fibroblasts. From these data, we extracted parameters such as damping rate and noise intensity using two simple mathematical models, one describing a damped oscillator driven by noise, and one describing a self-sustained noisy oscillator. Both models describe the data well and enabled us to quantitatively characterize both wild-type cells and several mutants. It has been suggested that the circadian clock is self-sustained at the single cell level, but we conclude that present data are not sufficient to determine whether the circadian clock of single SCN neurons and fibroblasts is a damped or a self-sustained oscillator. We show how to settle this question, however, by testing the models' predictions of different phases and amplitudes in response to a periodic entrainment signal (zeitgeber).
生物发光技术可精确监测单个细胞中的生物钟。我们分析了小鼠 SCN 神经元和成纤维细胞中 Per 基因表达的生物发光数据。从这些数据中,我们使用两个简单的数学模型提取了参数,如阻尼率和噪声强度,一个模型描述了由噪声驱动的阻尼振荡器,另一个模型描述了一个自我维持的噪声振荡器。这两个模型都很好地描述了数据,并使我们能够对野生型细胞和几种突变体进行定量表征。有人认为生物钟在单细胞水平上是自我维持的,但我们的结论是,目前的数据不足以确定单个 SCN 神经元和成纤维细胞的生物钟是阻尼振荡器还是自我维持振荡器。然而,我们通过测试模型对周期性驯化信号( zeitgeber)的不同相位和幅度的预测,展示了如何解决这个问题。