Suppr超能文献

关于原始意义反义编码。

On primordial sense-antisense coding.

机构信息

Human Genetics Center, School of Public Health, University of Texas, Houston, TX 77225, USA.

出版信息

J Mol Evol. 2009 Nov;69(5):555-67. doi: 10.1007/s00239-009-9288-4. Epub 2009 Dec 3.

Abstract

The genetic code is implemented by aminoacyl-tRNA synthetases (aaRS). These 20 enzymes are divided into two classes that, despite performing same functions, have nothing common in structure. The mystery of this striking partition of aaRSs might have been concealed in their sterically complementary modes of tRNA recognition that, as we have found recently, protect the tRNAs with complementary anticodons from confusion in translation. This finding implies that, in the beginning, life increased its coding repertoire by the pairs of complementary codons (rather than one-by-one) and used both complementary strands of genes as templates for translation. The class I and class II aaRSs may represent one of the most important examples of such primordial sense-antisense (SAS) coding (Rodin and Ohno, Orig Life Evol Biosph 25:565-589, 1995). In this report, we address the issue of SAS coding in a wider scope. We suggest a variety of advantages that such coding would have had in exploring a wider sequence space before translation became highly specific. In particular, we confirm that in Achlya klebsiana a single gene might have originally coded for an HSP70 chaperonin (class II aaRS homolog) and an NAD-specific GDH-like enzyme (class I aaRS homolog) via its sense and antisense strands. Thus, in contrast to the conclusions in Williams et al. (Mol Biol Evol 26:445-450, 2009), this could indeed be a "Rosetta stone" gene (Carter and Duax, Mol Cell 10:705-708, 2002) (eroded somewhat, though) for the SAS origin of the two aaRS classes.

摘要

遗传密码由氨酰-tRNA 合成酶(aaRS)执行。这 20 种酶分为两类,尽管它们执行相同的功能,但在结构上没有任何共同之处。aaRS 这种惊人的分区之谜可能隐藏在它们对 tRNA 识别的空间互补模式中,正如我们最近发现的那样,这种模式保护了具有互补反密码子的 tRNA 不会在翻译中混淆。这一发现意味着,在最初,生命通过互补密码子对(而不是一个一个地)增加其编码库,并将基因的两条互补链都用作翻译的模板。I 类和 II 类 aaRS 可能代表了这种原始 sense-antisense(SAS)编码(Rodin 和 Ohno,Orig Life Evol Biosph 25:565-589, 1995)的最重要例子之一。在本报告中,我们从更广泛的角度探讨了 SAS 编码的问题。我们提出了在翻译变得高度特异性之前,这种编码在探索更广泛的序列空间方面可能具有的多种优势。特别是,我们证实,在 Achlya klebsiana 中,单个基因可能最初通过其 sense 和 antisense 链编码 HSP70 伴侣蛋白(II 类 aaRS 同源物)和 NAD 特异性 GDH 样酶(I 类 aaRS 同源物)。因此,与 Williams 等人的结论(Mol Biol Evol 26:445-450, 2009)相反,这确实可能是一个“罗塞塔石碑”基因(Carter 和 Duax,Mol Cell 10:705-708, 2002)(尽管有些侵蚀),用于证明这两个 aaRS 类别的 SAS 起源。

相似文献

1
On primordial sense-antisense coding.关于原始意义反义编码。
J Mol Evol. 2009 Nov;69(5):555-67. doi: 10.1007/s00239-009-9288-4. Epub 2009 Dec 3.
9
Aminoacyl-tRNA synthetase evolution and sectoring of the genetic code.氨酰-tRNA合成酶的进化与遗传密码的分区
Transcription. 2018;9(4):205-224. doi: 10.1080/21541264.2018.1467718. Epub 2018 May 30.

引用本文的文献

1
Chemical Evolution of Life on Earth.地球上生命的化学演化
Genes (Basel). 2025 Feb 13;16(2):220. doi: 10.3390/genes16020220.
7
Evolution of the genetic code.遗传密码的演变。
Transcription. 2021 Feb;12(1):28-53. doi: 10.1080/21541264.2021.1927652. Epub 2021 May 18.

本文引用的文献

2
RNA-dependent RNA switches in bacteria.细菌中的RNA依赖性RNA开关
Methods Mol Biol. 2009;540:207-14. doi: 10.1007/978-1-59745-558-9_15.
4
A human B cell methylome at 100-base pair resolution.人类B细胞甲基化组,分辨率达100个碱基对。
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):671-8. doi: 10.1073/pnas.0812399106. Epub 2009 Jan 12.
8
Whence the genetic code? Thawing the 'frozen accident'.遗传密码从何而来?解冻“冻结的偶然事件”。
Heredity (Edinb). 2008 Apr;100(4):339-40. doi: 10.1038/hdy.2008.7. Epub 2008 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验