Human Genetics Center, School of Public Health, University of Texas, Houston, TX 77225, USA.
J Mol Evol. 2009 Nov;69(5):555-67. doi: 10.1007/s00239-009-9288-4. Epub 2009 Dec 3.
The genetic code is implemented by aminoacyl-tRNA synthetases (aaRS). These 20 enzymes are divided into two classes that, despite performing same functions, have nothing common in structure. The mystery of this striking partition of aaRSs might have been concealed in their sterically complementary modes of tRNA recognition that, as we have found recently, protect the tRNAs with complementary anticodons from confusion in translation. This finding implies that, in the beginning, life increased its coding repertoire by the pairs of complementary codons (rather than one-by-one) and used both complementary strands of genes as templates for translation. The class I and class II aaRSs may represent one of the most important examples of such primordial sense-antisense (SAS) coding (Rodin and Ohno, Orig Life Evol Biosph 25:565-589, 1995). In this report, we address the issue of SAS coding in a wider scope. We suggest a variety of advantages that such coding would have had in exploring a wider sequence space before translation became highly specific. In particular, we confirm that in Achlya klebsiana a single gene might have originally coded for an HSP70 chaperonin (class II aaRS homolog) and an NAD-specific GDH-like enzyme (class I aaRS homolog) via its sense and antisense strands. Thus, in contrast to the conclusions in Williams et al. (Mol Biol Evol 26:445-450, 2009), this could indeed be a "Rosetta stone" gene (Carter and Duax, Mol Cell 10:705-708, 2002) (eroded somewhat, though) for the SAS origin of the two aaRS classes.
遗传密码由氨酰-tRNA 合成酶(aaRS)执行。这 20 种酶分为两类,尽管它们执行相同的功能,但在结构上没有任何共同之处。aaRS 这种惊人的分区之谜可能隐藏在它们对 tRNA 识别的空间互补模式中,正如我们最近发现的那样,这种模式保护了具有互补反密码子的 tRNA 不会在翻译中混淆。这一发现意味着,在最初,生命通过互补密码子对(而不是一个一个地)增加其编码库,并将基因的两条互补链都用作翻译的模板。I 类和 II 类 aaRS 可能代表了这种原始 sense-antisense(SAS)编码(Rodin 和 Ohno,Orig Life Evol Biosph 25:565-589, 1995)的最重要例子之一。在本报告中,我们从更广泛的角度探讨了 SAS 编码的问题。我们提出了在翻译变得高度特异性之前,这种编码在探索更广泛的序列空间方面可能具有的多种优势。特别是,我们证实,在 Achlya klebsiana 中,单个基因可能最初通过其 sense 和 antisense 链编码 HSP70 伴侣蛋白(II 类 aaRS 同源物)和 NAD 特异性 GDH 样酶(I 类 aaRS 同源物)。因此,与 Williams 等人的结论(Mol Biol Evol 26:445-450, 2009)相反,这确实可能是一个“罗塞塔石碑”基因(Carter 和 Duax,Mol Cell 10:705-708, 2002)(尽管有些侵蚀),用于证明这两个 aaRS 类别的 SAS 起源。