EcoTopia Science Institute, Nagoya University, 464-8603, Nagoya, Japan.
Rev Environ Contam Toxicol. 2010;203:1-86. doi: 10.1007/978-1-4419-1352-4_1.
It is often presumed that all chemicals in soil are available to microorganisms, plant roots, and soil fauna via dermal exposure. Subsequent bioaccumulation through the food chain may then result in exposure to higher organisms. Using the presumption of total availability, national governments reduce environmental threshold levels of regulated chemicals by increasing guideline safety margins. However, evidence shows that chemical residues in the soil environment are not always bioavailable. Hence, actual chemical exposure levels of biota are much less than concentrations present in soil would suggest. Because "bioavailability" conveys meaning that combines implications of chemical sol persistency, efficacy, and toxicity, insights on the magnitude of a chemicals soil bioavailability is valuable. however, soil bioavailability of chemicals is a complex topic, and is affected by chemical properties, soil properties, species exposed, climate, and interaction processes. In this review, the state-of-art scientific basis for bioavailability is addressed. Key points covered include: definition, factors affecting bioavailability, equations governing key transport and distributive kinetics, and primary methods for estimating bioavailability. Primary transport mechanisms in living organisms, critical to an understanding of bioavailability, also presage the review. Transport of lipophilic chemicals occurs mainly by passive diffusion for all microorganisms, plants, and soil fauna. Therefore, the distribution of a chemical between organisms and soil (bioavailable proportion) follows partition equilibrium theory. However, a chemical's bioavailability does not always follow partition equilibrium theory because of other interactions with soil, such as soil sorption, hysteretic desorption, effects of surfactants in pore water, formation of "bound residue", etc. Bioassays for estimating chemical bioavailability have been introduced with several targeted endpoints: microbial degradation, uptake by higher plants and soil fauna, and toxicity to organisms. However, there bioassays are often time consuming and laborious. Thus, mild extraction methods have been employed to estimate bioavailability of chemicals. Mild methods include sequential extraction using alcohols, hexane/water, supercritical fluids (carbon dioxide), aqueous hydroxypropyl-beta-cyclodextrin extraction, polymeric TENAX beads extraction, and poly(dimethylsiloxane)-coated solid-phase microextraction. It should be noted that mild extraction methods may predict bioavailability at the moment when measurements are carried out, but not the changes in bioavailability that may occur over time. Simulation models are needed to estimate better bioavailability as a function of exposure time. In the past, models have progressed significantly by addressing each group of organisms separately: microbial degradation, plant uptake via evapotranspiration processes, and uptake of soil fauna in their habitat. This approach has been used primarily because of wide differences in the physiology and behaviors of such disparate organisms. However, improvement of models is badly needed, Particularly to describe uptake processes by plant and animals that impinge on bioavailability. Although models are required to describe all important factors that may affect chemical bioavailability to individual organisms over time (e.g., sorption/desorption to soil/sediment, volatilization, dissolution, aging, "bound residue" formation, biodegradation, etc.), these models should be simplified, when possible, to limit the number of parameters to the practical minimum. Although significant scientific progress has been made in understanding the complexities in specific methodologies dedicated to determining bioavailability, no method has yet emerged to characterized bioavailability across a wide range of chemicals, organisms, and soils/sediments. The primary aim in studying bioavailability is to define options for addressing bioremediation or environmental toxicity (risk assessment), and that is unlikely to change. Because of its importance in estimating research is needed to more comprehensively address the key environmental issue of "bioavailability of chemicals in soil/sediment."
人们通常认为,所有土壤中的化学物质都可以通过皮肤接触被微生物、植物根系和土壤动物吸收。随后,通过食物链的生物累积,可能会导致更高等生物接触到这些化学物质。基于这种全部可利用的假设,各国政府通过增加指导安全裕度来降低受监管化学物质的环境门槛水平。然而,有证据表明,土壤环境中的化学残留物并不总是具有生物利用性。因此,生物群实际接触到的化学物质水平远低于土壤中存在的浓度所表明的水平。由于“生物利用度”传达了一种含义,即结合了化学物质持久性、效力和毒性的含义,因此了解化学物质在土壤中的生物利用度具有重要意义。然而,化学物质的土壤生物利用度是一个复杂的话题,受到化学性质、土壤性质、暴露的物种、气候和相互作用过程的影响。在这篇综述中,讨论了生物利用度的最新科学依据。涵盖的要点包括:定义、影响生物利用度的因素、控制关键传输和分布动力学的方程,以及估计生物利用度的主要方法。生物体内的主要传输机制对理解生物利用度至关重要,也预示着综述的展开。所有微生物、植物和土壤动物的亲脂性化学物质的运输主要通过被动扩散进行。因此,化学物质在生物与土壤之间的分配(可利用比例)遵循分配平衡理论。然而,由于与土壤的其他相互作用,如土壤吸附、滞后解吸、孔隙水中表面活性剂的影响、“结合残留”的形成等,化学物质的生物利用度并不总是遵循分配平衡理论。已经引入了用于估计化学物质生物利用度的生物测定法,具有几个针对性的终点:微生物降解、高等植物和土壤动物的吸收以及对生物体的毒性。然而,这些生物测定法通常耗时费力。因此,采用了温和的提取方法来估计化学物质的生物利用度。温和的方法包括使用醇、正己烷/水、超临界流体(二氧化碳)、羟丙基-β-环糊精水溶液提取、聚合物 TENAX 珠提取和聚二甲基硅氧烷-涂覆固相微萃取。需要注意的是,温和的提取方法可以预测测量时的生物利用度,但不能预测随着时间的推移可能发生的生物利用度变化。需要模拟模型来更好地估计作为暴露时间函数的生物利用度。过去,通过分别解决每一组生物体的问题,模型取得了显著进展:微生物降解、植物通过蒸腾过程的吸收,以及在其栖息地中土壤动物的吸收。这种方法主要是因为如此不同的生物体在生理学和行为上存在广泛差异。然而,迫切需要改进模型,特别是要描述对生物利用度有影响的植物和动物的吸收过程。尽管模型是描述随着时间的推移可能影响单个生物体化学物质生物利用度的所有重要因素(例如,土壤/沉积物的吸附/解吸、挥发、溶解、老化、“结合残留”形成、生物降解等)所必需的,但这些模型应尽可能简化,将参数数量限制在实际最小值。尽管在理解专门用于确定生物利用度的特定方法的复杂性方面取得了重大科学进展,但还没有出现一种方法可以跨广泛的化学物质、生物体和土壤/沉积物来描述生物利用度。研究生物利用度的主要目的是定义解决生物修复或环境毒性(风险评估)的方案,这一目标不太可能改变。由于其在估计中的重要性,需要进行研究以更全面地解决“土壤/沉积物中化学物质的生物利用度”这一关键环境问题。