Karjiban Roghayeh Abedi, Basyaruddin Mohd, Rahman Abdul, Salleh Abu Bakar, Basri Mahiran, Zaliha Raja Noor, Abd Rahman Raja, Leow Adam, Chor Thean
Department of Chemistry, Faculty of Science, Universiti Putra Malaysia.
Protein Pept Lett. 2010 Jun;17(6):699-707. doi: 10.2174/092986610791190345.
An all-atom level MD simulation in explicit solvent at high temperature is a powerful technique to increase our knowledge about the structurally important regions modulating thermal stability in thermenzymes. In this respect, two large-sized thermoalkalophilic enzymes from Bacillus stearothermophilus L1 (L1 lipase) and Geobacillus zalihae strain T1 (T1 lipase) are well-established representatives. In this paper, comparative results from temperature-induced MD simulations of both model systems at 300 K, 400 K and 500 K are presented and discussed with respect to identification of highly flexible regions critical to thermostability. From our MD simulation results, specific regions along the L1 lipase and T1 lipase polypeptide chain including the small domain and the main catalytic domain or core domain of both enzymes show a marked increase in fluctuations and dynamics followed by clear structural changes. Overall, the N-terminal moiety of both enzymes and their small domains exhibit hyper-sensitivity to thermal stress. The results appear to propose that these regions are critical in determining of the overall thermal stability of both organisms.
在高温下于显式溶剂中进行的全原子水平分子动力学模拟,是一种强大的技术,可增进我们对调节嗜热酶热稳定性的结构重要区域的了解。在这方面,来自嗜热脂肪芽孢杆菌L1(L1脂肪酶)和扎利哈嗜热栖热菌T1菌株(T1脂肪酶)的两种大型嗜热嗜碱酶是公认的代表。本文给出并讨论了在300 K、400 K和500 K下对这两种模型系统进行温度诱导分子动力学模拟的比较结果,以确定对热稳定性至关重要的高度柔性区域。根据我们的分子动力学模拟结果,沿着L1脂肪酶和T1脂肪酶多肽链的特定区域,包括两种酶的小结构域以及主要催化结构域或核心结构域,显示出波动和动力学显著增加,随后结构发生明显变化。总体而言,两种酶的N端部分及其小结构域对热应激表现出超敏感性。结果似乎表明,这些区域对于确定两种生物体的整体热稳定性至关重要。