Suppr超能文献

测量基因表达谱之间的相似性:贝叶斯方法。

Measuring similarity between gene expression profiles: a Bayesian approach.

机构信息

Computer Laboratory, University of Cambridge, Cambridge, CB3 0FD, UK.

出版信息

BMC Genomics. 2009 Dec 3;10 Suppl 3(Suppl 3):S14. doi: 10.1186/1471-2164-10-S3-S14.

Abstract

BACKGROUND

Grouping genes into clusters on the basis of similarity between their expression profiles has been the main approach to predict functional modules, from which important inference or further investigation decision could be made. While the univocal determination of similarity metric is important, current practices are normally involved with Euclidean distance and Pearson correlation, of which assumptions are not likely the case for high-throughput microarray data.

RESULTS

We advocate the use of a novel metric - BayesGen - to measure similarity between gene expression profiles, and demonstrate its performance on two important applications: constructing genome-wide co-expression network, and clustering cancer human tissues into subtypes. BayesGen is formulated as the evidence ratio between two alternative hypotheses about the generating mechanism of a given pair of genes, and incorporates as prior knowledge the global characteristics of the whole dataset. Through the joint modelling of expected intensity levels and noise variances, it addresses the inherent nonlinearity and the association of noise levels across different microarray value ranges. The full Bayesian formulation also facilitates the possibility of meta-analysis.

CONCLUSION

BayesGen allows more effective extraction of similarity information between genes from microarray expression data, which has significant effect on various inference tasks. It also provides a robust choice for other object-feature data, as illustrated through the results of the test on synthetic data.

摘要

背景

基于基因表达谱之间的相似性将基因分组到聚类中,一直是预测功能模块的主要方法,从中可以做出重要的推断或进一步的调查决策。虽然相似性度量的明确确定很重要,但目前的实践通常涉及欧几里得距离和皮尔逊相关系数,而这些假设不太可能适用于高通量微阵列数据。

结果

我们主张使用一种新的度量标准 - BayesGen - 来测量基因表达谱之间的相似性,并在两个重要应用中展示其性能:构建全基因组共表达网络,以及将人类癌症组织聚类成亚型。BayesGen 被表述为关于给定基因对生成机制的两个替代假设之间的证据比,并将整个数据集的全局特征作为先验知识纳入其中。通过对预期强度水平和噪声方差的联合建模,它解决了不同微阵列值范围内噪声水平的固有非线性和相关性。全贝叶斯公式也为荟萃分析提供了可能性。

结论

BayesGen 允许从微阵列表达数据中更有效地提取基因之间的相似性信息,这对各种推断任务都有显著影响。它还为其他对象特征数据提供了稳健的选择,如通过对合成数据的测试结果所示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ee/2788366/e266c4d08af3/1471-2164-10-S3-S14-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验