Suppr超能文献

利用稀疏时空先验进行高效贝叶斯多变量 fMRI 分析。

Efficient Bayesian multivariate fMRI analysis using a sparsifying spatio-temporal prior.

机构信息

Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands.

出版信息

Neuroimage. 2010 Mar;50(1):150-61. doi: 10.1016/j.neuroimage.2009.11.064. Epub 2009 Dec 1.

Abstract

Bayesian logistic regression with a multivariate Laplace prior is introduced as a multivariate approach to the analysis of neuroimaging data. It is shown that, by rewriting the multivariate Laplace distribution as a scale mixture, we can incorporate spatio-temporal constraints which lead to smooth importance maps that facilitate subsequent interpretation. The posterior of interest is computed using an approximate inference method called expectation propagation and becomes feasible due to fast inversion of a sparse precision matrix. We illustrate the performance of the method on an fMRI dataset acquired while subjects were shown handwritten digits. The obtained models perform competitively in terms of predictive performance and give rise to interpretable importance maps. Estimation of the posterior of interest is shown to be feasible even for very large models with thousands of variables.

摘要

贝叶斯逻辑回归与多元拉普拉斯先验被引入到神经影像学数据的分析中,作为一种多元方法。通过将多元拉普拉斯分布重写为尺度混合,我们可以引入时空约束,从而得到平滑的重要图,便于后续解释。感兴趣的后验使用一种称为期望传播的近似推理方法进行计算,并且由于稀疏精度矩阵的快速反转而变得可行。我们在手写数字展示给受试者时获取的 fMRI 数据集上说明了该方法的性能。所获得的模型在预测性能方面表现出色,并产生了可解释的重要图。即使对于具有数千个变量的非常大的模型,也可以证明对感兴趣的后验的估计是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验