Suppr超能文献

相似性、特征发现与大小原则。

Similarity, feature discovery, and the size principle.

作者信息

Navarro Daniel J, Perfors Amy F

机构信息

University of Adelaide, SA, Australia.

出版信息

Acta Psychol (Amst). 2010 Mar;133(3):256-68. doi: 10.1016/j.actpsy.2009.10.008. Epub 2009 Dec 2.

Abstract

In this paper we consider the "size principle" for featural similarity, which states that rare features should be weighted more heavily than common features in people's evaluations of the similarity between two entities. Specifically, it predicts that if a feature is possessed by n objects, the expected weight scales according to a 1/n law. One justification of the size principle emerges from a Bayesian analysis of simple induction problems (Tenenbaum & Griffiths, 2001), and is closely related to work by Shepard (1987) proposing universal laws for inductive generalization. In this article, we (1) show that the size principle can be more generally derived as an expression of a form of representational optimality, and (2) present analyses suggesting that across 11 different data sets in the domains of animals and artifacts, human judgments are in agreement with this law. A number of implications are discussed.

摘要

在本文中,我们探讨了特征相似性的“规模原则”,该原则指出,在人们评估两个实体之间的相似性时,罕见特征应比常见特征被赋予更重的权重。具体而言,它预测,如果一个特征为n个对象所拥有,那么预期权重将按照1/n法则进行缩放。规模原则的一种合理性源于对简单归纳问题的贝叶斯分析(特南鲍姆和格里菲思,2001年),并且与谢泼德(1987年)提出的归纳概括通用法则的研究密切相关。在本文中,我们(1)表明规模原则可以更普遍地作为一种表征最优形式的表达式推导出来,并且(2)进行的分析表明,在动物和人工制品领域的11个不同数据集中,人类判断与该法则一致。我们还讨论了一些相关影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验