Suppr超能文献

环境输入对网络结构逆向工程方法的影响。

Impact of environmental inputs on reverse-engineering approach to network structures.

作者信息

Wu Jianhua, Sinfield James L, Buchanan-Wollaston Vicky, Feng Jianfeng

机构信息

Department of Neuroscience, Columbia University, New York, NY, 10032, USA.

出版信息

BMC Syst Biol. 2009 Dec 4;3:113. doi: 10.1186/1752-0509-3-113.

Abstract

BACKGROUND

Uncovering complex network structures from a biological system is one of the main topic in system biology. The network structures can be inferred by the dynamical Bayesian network or Granger causality, but neither techniques have seriously taken into account the impact of environmental inputs.

RESULTS

With considerations of natural rhythmic dynamics of biological data, we propose a system biology approach to reveal the impact of environmental inputs on network structures. We first represent the environmental inputs by a harmonic oscillator and combine them with Granger causality to identify environmental inputs and then uncover the causal network structures. We also generalize it to multiple harmonic oscillators to represent various exogenous influences. This system approach is extensively tested with toy models and successfully applied to a real biological network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The aim is to identify those genes that are directly affected by the presence of the sunlight and uncover the interactive network structures associating with flowering metabolism.

CONCLUSION

We demonstrate that environmental inputs are crucial for correctly inferring network structures. Harmonic causal method is proved to be a powerful technique to detect environment inputs and uncover network structures, especially when the biological data exhibit periodic oscillations.

摘要

背景

从生物系统中揭示复杂的网络结构是系统生物学的主要课题之一。网络结构可以通过动态贝叶斯网络或格兰杰因果关系来推断,但这两种技术都没有充分考虑环境输入的影响。

结果

考虑到生物数据的自然节律动态,我们提出了一种系统生物学方法来揭示环境输入对网络结构的影响。我们首先用一个谐波振荡器来表示环境输入,并将其与格兰杰因果关系相结合,以识别环境输入,进而揭示因果网络结构。我们还将其推广到多个谐波振荡器,以表示各种外源影响。这种系统方法在玩具模型上进行了广泛测试,并成功应用于模式植物拟南芥开花基因微阵列数据的真实生物网络。目的是识别那些直接受阳光存在影响的基因,并揭示与开花代谢相关的交互网络结构。

结论

我们证明环境输入对于正确推断网络结构至关重要。谐波因果方法被证明是一种检测环境输入和揭示网络结构的强大技术,尤其是当生物数据呈现周期性振荡时。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a717/2799448/97c9b5bffdcf/1752-0509-3-113-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验