Suppr超能文献

模拟神经系统中的因果网络。

Causal networks in simulated neural systems.

机构信息

Department of Informatics, University of Sussex, Brighton, BN1 9QJ, UK,

出版信息

Cogn Neurodyn. 2008 Mar;2(1):49-64. doi: 10.1007/s11571-007-9031-z. Epub 2007 Oct 20.

Abstract

Neurons engage in causal interactions with one another and with the surrounding body and environment. Neural systems can therefore be analyzed in terms of causal networks, without assumptions about information processing, neural coding, and the like. Here, we review a series of studies analyzing causal networks in simulated neural systems using a combination of Granger causality analysis and graph theory. Analysis of a simple target-fixation model shows that causal networks provide intuitive representations of neural dynamics during behavior which can be validated by lesion experiments. Extension of the approach to a neurorobotic model of the hippocampus and surrounding areas identifies shifting causal pathways during learning of a spatial navigation task. Analysis of causal interactions at the population level in the model shows that behavioral learning is accompanied by selection of specific causal pathways-"causal cores"-from among large and variable repertoires of neuronal interactions. Finally, we argue that a causal network perspective may be useful for characterizing the complex neural dynamics underlying consciousness.

摘要

神经元彼此之间以及与周围的身体和环境之间存在因果相互作用。因此,可以根据因果网络来分析神经网络,而无需对信息处理、神经编码等进行假设。在这里,我们回顾了一系列使用格兰杰因果分析和图论相结合的方法来分析模拟神经网络中的因果网络的研究。对一个简单的目标注视模型的分析表明,因果网络提供了行为期间神经动力学的直观表示,可以通过损伤实验来验证。该方法扩展到海马体及其周围区域的神经机器人模型,确定了在空间导航任务学习过程中因果途径的转移。对模型中群体水平上因果相互作用的分析表明,行为学习伴随着从神经元相互作用的大量和可变的组合中选择特定的因果途径——“因果核心”。最后,我们认为,因果网络的观点可能有助于描述意识背后复杂的神经动力学。

相似文献

1
Causal networks in simulated neural systems.
Cogn Neurodyn. 2008 Mar;2(1):49-64. doi: 10.1007/s11571-007-9031-z. Epub 2007 Oct 20.
2
Distinguishing causal interactions in neural populations.
Neural Comput. 2007 Apr;19(4):910-33. doi: 10.1162/neco.2007.19.4.910.
3
Causal connectivity of evolved neural networks during behavior.
Network. 2005 Mar;16(1):35-54. doi: 10.1080/09548980500238756.
5
Causal measures of structure and plasticity in simulated and living neural networks.
PLoS One. 2008 Oct 7;3(10):e3355. doi: 10.1371/journal.pone.0003355.
7
Spike-field Granger causality for hybrid neural data analysis.
J Neurophysiol. 2019 Aug 1;122(2):809-822. doi: 10.1152/jn.00246.2019. Epub 2019 Jun 26.
8
Dynamic task-linked switching between brain networks - A tri-network perspective.
Brain Cogn. 2021 Jul;151:105725. doi: 10.1016/j.bandc.2021.105725. Epub 2021 Apr 28.
9
Identifying Granger causal relationships between neural power dynamics and variables of interest.
Neuroimage. 2015 May 1;111:489-504. doi: 10.1016/j.neuroimage.2014.12.059. Epub 2014 Dec 30.
10
On formal limitations of causal ecological networks.
Philos Trans R Soc Lond B Biol Sci. 2024 Sep 9;379(1909):20230170. doi: 10.1098/rstb.2023.0170. Epub 2024 Jul 22.

引用本文的文献

1
Maximum likelihood estimation of spatially dependent interactions in large populations of cortical neurons.
Front Comput Neurosci. 2025 Aug 13;19:1639829. doi: 10.3389/fncom.2025.1639829. eCollection 2025.
2
Causal connectivity measures for pulse-output network reconstruction: Analysis and applications.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2305297121. doi: 10.1073/pnas.2305297121. Epub 2024 Mar 29.
3
From the origins to the stream of consciousness and its neural correlates.
Front Integr Neurosci. 2022 Nov 4;16:928978. doi: 10.3389/fnint.2022.928978. eCollection 2022.
4
SEAI: Social Emotional Artificial Intelligence Based on Damasio's Theory of Mind.
Front Robot AI. 2018 Feb 7;5:6. doi: 10.3389/frobt.2018.00006. eCollection 2018.
5
Emergence of the Affect from the Variation in the Whole-Brain Flow of Information.
Brain Sci. 2019 Dec 21;10(1):8. doi: 10.3390/brainsci10010008.
6
Four-Dimensional Graded Consciousness.
Front Psychol. 2017 Mar 21;8:420. doi: 10.3389/fpsyg.2017.00420. eCollection 2017.
7
Default network connectivity decodes brain states with simulated microgravity.
Cogn Neurodyn. 2016 Apr;10(2):113-120. doi: 10.1007/s11571-015-9359-8. Epub 2015 Oct 14.
9
Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats.
Cogn Neurodyn. 2016 Feb;10(1):23-30. doi: 10.1007/s11571-015-9361-1. Epub 2015 Nov 4.
10
Granger causality network reconstruction of conductance-based integrate-and-fire neuronal systems.
PLoS One. 2014 Feb 19;9(2):e87636. doi: 10.1371/journal.pone.0087636. eCollection 2014.

本文引用的文献

1
Revealing network connectivity from response dynamics.
Phys Rev Lett. 2007 Jun 1;98(22):224101. doi: 10.1103/PhysRevLett.98.224101. Epub 2007 May 30.
2
Distinguishing causal interactions in neural populations.
Neural Comput. 2007 Apr;19(4):910-33. doi: 10.1162/neco.2007.19.4.910.
3
Computational inference of neural information flow networks.
PLoS Comput Biol. 2006 Nov 24;2(11):e161. doi: 10.1371/journal.pcbi.0020161. Epub 2006 Oct 12.
4
A mathematical framework for inferring connectivity in probabilistic neuronal networks.
Math Biosci. 2007 Feb;205(2):204-51. doi: 10.1016/j.mbs.2006.08.020. Epub 2006 Sep 5.
5
Mapping information flow in sensorimotor networks.
PLoS Comput Biol. 2006 Oct 27;2(10):e144. doi: 10.1371/journal.pcbi.0020144.
6
Theories and measures of consciousness: an extended framework.
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10799-804. doi: 10.1073/pnas.0604347103. Epub 2006 Jul 3.
7
Extending the effects of spike-timing-dependent plasticity to behavioral timescales.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8876-81. doi: 10.1073/pnas.0600676103. Epub 2006 May 26.
8
Causal connectivity of evolved neural networks during behavior.
Network. 2005 Mar;16(1):35-54. doi: 10.1080/09548980500238756.
9
Organizing principles of real-time memory encoding: neural clique assemblies and universal neural codes.
Trends Neurosci. 2006 Jan;29(1):48-57. doi: 10.1016/j.tins.2005.11.004. Epub 2005 Dec 1.
10
The human connectome: A structural description of the human brain.
PLoS Comput Biol. 2005 Sep;1(4):e42. doi: 10.1371/journal.pcbi.0010042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验