Suppr超能文献

模拟神经系统中的因果网络。

Causal networks in simulated neural systems.

机构信息

Department of Informatics, University of Sussex, Brighton, BN1 9QJ, UK,

出版信息

Cogn Neurodyn. 2008 Mar;2(1):49-64. doi: 10.1007/s11571-007-9031-z. Epub 2007 Oct 20.

Abstract

Neurons engage in causal interactions with one another and with the surrounding body and environment. Neural systems can therefore be analyzed in terms of causal networks, without assumptions about information processing, neural coding, and the like. Here, we review a series of studies analyzing causal networks in simulated neural systems using a combination of Granger causality analysis and graph theory. Analysis of a simple target-fixation model shows that causal networks provide intuitive representations of neural dynamics during behavior which can be validated by lesion experiments. Extension of the approach to a neurorobotic model of the hippocampus and surrounding areas identifies shifting causal pathways during learning of a spatial navigation task. Analysis of causal interactions at the population level in the model shows that behavioral learning is accompanied by selection of specific causal pathways-"causal cores"-from among large and variable repertoires of neuronal interactions. Finally, we argue that a causal network perspective may be useful for characterizing the complex neural dynamics underlying consciousness.

摘要

神经元彼此之间以及与周围的身体和环境之间存在因果相互作用。因此,可以根据因果网络来分析神经网络,而无需对信息处理、神经编码等进行假设。在这里,我们回顾了一系列使用格兰杰因果分析和图论相结合的方法来分析模拟神经网络中的因果网络的研究。对一个简单的目标注视模型的分析表明,因果网络提供了行为期间神经动力学的直观表示,可以通过损伤实验来验证。该方法扩展到海马体及其周围区域的神经机器人模型,确定了在空间导航任务学习过程中因果途径的转移。对模型中群体水平上因果相互作用的分析表明,行为学习伴随着从神经元相互作用的大量和可变的组合中选择特定的因果途径——“因果核心”。最后,我们认为,因果网络的观点可能有助于描述意识背后复杂的神经动力学。

相似文献

1
Causal networks in simulated neural systems.模拟神经系统中的因果网络。
Cogn Neurodyn. 2008 Mar;2(1):49-64. doi: 10.1007/s11571-007-9031-z. Epub 2007 Oct 20.
2
Distinguishing causal interactions in neural populations.区分神经群体中的因果相互作用。
Neural Comput. 2007 Apr;19(4):910-33. doi: 10.1162/neco.2007.19.4.910.
7
Spike-field Granger causality for hybrid neural data analysis.用于混合神经数据分析的尖峰-场格兰杰因果关系。
J Neurophysiol. 2019 Aug 1;122(2):809-822. doi: 10.1152/jn.00246.2019. Epub 2019 Jun 26.
10
On formal limitations of causal ecological networks.关于因果生态网络的形式限制。
Philos Trans R Soc Lond B Biol Sci. 2024 Sep 9;379(1909):20230170. doi: 10.1098/rstb.2023.0170. Epub 2024 Jul 22.

引用本文的文献

3
From the origins to the stream of consciousness and its neural correlates.从起源到意识流及其神经关联。
Front Integr Neurosci. 2022 Nov 4;16:928978. doi: 10.3389/fnint.2022.928978. eCollection 2022.
6
Four-Dimensional Graded Consciousness.四维分级意识
Front Psychol. 2017 Mar 21;8:420. doi: 10.3389/fpsyg.2017.00420. eCollection 2017.

本文引用的文献

1
Revealing network connectivity from response dynamics.从响应动力学揭示网络连通性。
Phys Rev Lett. 2007 Jun 1;98(22):224101. doi: 10.1103/PhysRevLett.98.224101. Epub 2007 May 30.
2
Distinguishing causal interactions in neural populations.区分神经群体中的因果相互作用。
Neural Comput. 2007 Apr;19(4):910-33. doi: 10.1162/neco.2007.19.4.910.
3
Computational inference of neural information flow networks.神经信息流网络的计算推理
PLoS Comput Biol. 2006 Nov 24;2(11):e161. doi: 10.1371/journal.pcbi.0020161. Epub 2006 Oct 12.
5
Mapping information flow in sensorimotor networks.绘制感觉运动网络中的信息流。
PLoS Comput Biol. 2006 Oct 27;2(10):e144. doi: 10.1371/journal.pcbi.0020144.
6
Theories and measures of consciousness: an extended framework.意识的理论与测量:一个扩展框架。
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10799-804. doi: 10.1073/pnas.0604347103. Epub 2006 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验