Suppr超能文献

揭示频域中的相互作用。

Uncovering interactions in the frequency domain.

作者信息

Guo Shuixia, Wu Jianhua, Ding Mingzhou, Feng Jianfeng

机构信息

Department of Mathematics, Hunan Normal University, Changsha, China.

出版信息

PLoS Comput Biol. 2008 May 30;4(5):e1000087. doi: 10.1371/journal.pcbi.1000087.

Abstract

Oscillatory activity plays a critical role in regulating biological processes at levels ranging from subcellular, cellular, and network to the whole organism, and often involves a large number of interacting elements. We shed light on this issue by introducing a novel approach called partial Granger causality to reliably reveal interaction patterns in multivariate data with exogenous inputs and latent variables in the frequency domain. The method is extensively tested with toy models, and successfully applied to experimental datasets, including (1) gene microarray data of HeLa cell cycle; (2) in vivo multi-electrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of a sheep; and (3) in vivo LFPs recorded from distributed sites in the right hemisphere of a macaque monkey.

摘要

振荡活动在调节从亚细胞、细胞、网络到整个生物体等各个层面的生物过程中发挥着关键作用,并且通常涉及大量相互作用的元素。我们通过引入一种名为部分格兰杰因果关系的新方法来阐明这一问题,该方法能够可靠地揭示频域中具有外生输入和潜在变量的多变量数据中的相互作用模式。该方法在玩具模型上进行了广泛测试,并成功应用于实验数据集,包括:(1)HeLa细胞周期的基因微阵列数据;(2)从绵羊颞下皮质记录的体内多电极阵列(MEA)局部场电位(LFP);以及(3)从猕猴右半球不同部位记录的体内LFP。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0336/2398781/0ed94ec29bfc/pcbi.1000087.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验