Suppr超能文献

一种低噪声32通道无线神经记录系统的体内测试

In vivo testing of a low noise 32-channel wireless neural recording system.

作者信息

Yin Ming, Lee Seung Bae, Ghovanloo Maysam

机构信息

Department of Electrical and Computer Engineering, NCSU, Raleigh, NC, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1608-11. doi: 10.1109/IEMBS.2009.5333227.

Abstract

We present a 32-channel wireless implantable neural recording system-on-a-chip (SoC) that operates based on time division multiplexing (TDM) of pulse width modulated (PWM) samples with minimal substrate noise and interference. We have utilized analog-to-time conversion (ATC) on the transmitter and time-to-digital conversion (TDC) on the receiver to reduce the size and power consumption of the implantable unit by moving the digitization circuitry to the external unit. We have managed the TDM switching times such that no switching occurs during sensitive sampling onsets. The chip has been implemented in the AMI 0.5-microm standard CMOS process, occupying 3.3 x 3.0 mm(2) and consuming 5.6 mW at +/-1.5 V when all channels are active. The measured input referred noise for the entire system, including the receiver at 1 m distance, is only 4.9 microV(rms) from 1 Hz approximately 10 kHz. Finally, in vivo testing results on rats have been presented to validate the full functionality of the system.

摘要

我们展示了一种32通道无线植入式神经记录片上系统(SoC),该系统基于脉宽调制(PWM)样本的时分复用(TDM)运行,具有最小的衬底噪声和干扰。我们在发射器上采用了模数转换(ATC),在接收器上采用了时间数字转换(TDC),通过将数字化电路移到外部单元来减小植入单元的尺寸和功耗。我们对TDM切换时间进行了管理,使得在敏感采样开始期间不发生切换。该芯片采用AMI 0.5微米标准CMOS工艺实现,占用面积为3.3×3.0平方毫米,当所有通道都处于活动状态时,在±1.5 V电压下功耗为5.6毫瓦。整个系统(包括距离为1米的接收器)的测量输入参考噪声在1赫兹至约10千赫兹范围内仅为4.9微伏(均方根值)。最后,展示了在大鼠身上的体内测试结果,以验证该系统的全部功能。

相似文献

1
In vivo testing of a low noise 32-channel wireless neural recording system.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1608-11. doi: 10.1109/IEMBS.2009.5333227.
2
An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.
IEEE Sens J. 2016 Jan 15;16(2):475-484. doi: 10.1109/JSEN.2015.2483747. Epub 2015 Sep 28.
3
A dual slope charge sampling analog front-end for a wireless neural recording system.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3134-7. doi: 10.1109/EMBC.2014.6944287.
4
Wireless hippocampal neural recording via a multiple input RF receiver to construct place-specific firing fields.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:763-6. doi: 10.1109/EMBC.2012.6346043.
5
A low-noise receiver for multichannel wireless neural recording.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2024-7. doi: 10.1109/IEMBS.2008.4649588.
6
A wideband dual-antenna receiver for wireless recording from animals behaving in large arenas.
IEEE Trans Biomed Eng. 2013 Jul;60(7):1993-2004. doi: 10.1109/TBME.2013.2247603. Epub 2013 Feb 15.
7
An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications.
IEEE Trans Biomed Circuits Syst. 2010 Dec;4(6):360-71. doi: 10.1109/TBCAS.2010.2078814.
8
Continuous Time Level Crossing Sampling ADC for Bio-Potential Recording Systems.
IEEE Trans Circuits Syst I Regul Pap. 2013 Jun;60(6):1407-1418. doi: 10.1109/TCSI.2012.2220464.
9
An Impulse Radio PWM-Based Wireless Data Acquisition Sensor Interface.
IEEE Sens J. 2019 Jan 15;19(2):603-614. doi: 10.1109/JSEN.2018.2877889. Epub 2018 Oct 29.
10
A 1.48-mW low-phase-noise analog frequency modulator for wireless biotelemetry.
IEEE Trans Biomed Eng. 2005 May;52(5):938-43. doi: 10.1109/TBME.2005.845369.

引用本文的文献

1
An Integrated Circuit for Simultaneous Extracellular Electrophysiology Recording and Optogenetic Neural Manipulation.
IEEE Trans Biomed Eng. 2017 Mar;64(3):557-568. doi: 10.1109/TBME.2016.2609412.
3
A wireless multi-channel recording system for freely behaving mice and rats.
PLoS One. 2011;6(7):e22033. doi: 10.1371/journal.pone.0022033. Epub 2011 Jul 12.
4
A wireless multi-channel neural amplifier for freely moving animals.
Nat Neurosci. 2011 Feb;14(2):263-9. doi: 10.1038/nn.2730. Epub 2011 Jan 16.

本文引用的文献

1
A low-noise receiver for multichannel wireless neural recording.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2024-7. doi: 10.1109/IEMBS.2008.4649588.
2
Brain-controlled interfaces: movement restoration with neural prosthetics.
Neuron. 2006 Oct 5;52(1):205-20. doi: 10.1016/j.neuron.2006.09.019.
4
Multielectrode recordings: the next steps.
Curr Opin Neurobiol. 2002 Oct;12(5):602-6. doi: 10.1016/s0959-4388(02)00374-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验