Mongkolwat Pattanasak, Kleper Vladimir, Talbot Skip, Rubin Daniel
Department of Radiology, Northwestern University, 737 N. Michigan Ave, Suite 1600, Chicago, IL, 60611, USA,
J Digit Imaging. 2014 Dec;27(6):692-701. doi: 10.1007/s10278-014-9710-3.
Knowledge contained within in vivo imaging annotated by human experts or computer programs is typically stored as unstructured text and separated from other associated information. The National Cancer Informatics Program (NCIP) Annotation and Image Markup (AIM) Foundation information model is an evolution of the National Institute of Health's (NIH) National Cancer Institute's (NCI) Cancer Bioinformatics Grid (caBIG®) AIM model. The model applies to various image types created by various techniques and disciplines. It has evolved in response to the feedback and changing demands from the imaging community at NCI. The foundation model serves as a base for other imaging disciplines that want to extend the type of information the model collects. The model captures physical entities and their characteristics, imaging observation entities and their characteristics, markups (two- and three-dimensional), AIM statements, calculations, image source, inferences, annotation role, task context or workflow, audit trail, AIM creator details, equipment used to create AIM instances, subject demographics, and adjudication observations. An AIM instance can be stored as a Digital Imaging and Communications in Medicine (DICOM) structured reporting (SR) object or Extensible Markup Language (XML) document for further processing and analysis. An AIM instance consists of one or more annotations and associated markups of a single finding along with other ancillary information in the AIM model. An annotation describes information about the meaning of pixel data in an image. A markup is a graphical drawing placed on the image that depicts a region of interest. This paper describes fundamental AIM concepts and how to use and extend AIM for various imaging disciplines.
由人类专家或计算机程序注释的体内成像中包含的知识通常以非结构化文本形式存储,并与其他相关信息分开。国家癌症信息学计划(NCIP)注释与图像标记(AIM)基础信息模型是美国国立卫生研究院(NIH)下属的美国国立癌症研究所(NCI)的癌症生物信息学网格(caBIG®)AIM模型的演进版本。该模型适用于由各种技术和学科创建的各种图像类型。它是根据NCI成像社区的反馈和不断变化的需求而发展起来的。基础模型为其他想要扩展模型所收集信息类型的成像学科提供了基础。该模型捕获物理实体及其特征、成像观察实体及其特征、标记(二维和三维)、AIM语句、计算、图像来源、推断、注释角色、任务上下文或工作流程、审计跟踪、AIM创建者详细信息、用于创建AIM实例的设备、受试者人口统计学信息以及判定观察结果。一个AIM实例可以存储为医学数字成像和通信(DICOM)结构化报告(SR)对象或可扩展标记语言(XML)文档,以便进行进一步处理和分析。一个AIM实例由一个或多个针对单个发现的注释及相关标记以及AIM模型中的其他辅助信息组成。注释描述图像中像素数据含义的信息。标记是放置在图像上描绘感兴趣区域的图形。本文描述了AIM的基本概念以及如何针对各种成像学科使用和扩展AIM。