Suppr超能文献

在个体手指运动期间,用微电极脑电图(Micro-ECoG)电极记录的人类运动皮层活动。

Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements.

作者信息

Wang W, Degenhart A D, Collinger J L, Vinjamuri R, Sudre G P, Adelson P D, Holder D L, Leuthardt E C, Moran D W, Boninger M L, Schwartz A B, Crammond D J, Tyler-Kabara E C, Weber D J

机构信息

University of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:586-9. doi: 10.1109/IEMBS.2009.5333704.

Abstract

In this study human motor cortical activity was recorded with a customized micro-ECoG grid during individual finger movements. The quality of the recorded neural signals was characterized in the frequency domain from three different perspectives: (1) coherence between neural signals recorded from different electrodes, (2) modulation of neural signals by finger movement, and (3) accuracy of finger movement decoding. It was found that, for the high frequency band (60-120 Hz), coherence between neighboring micro-ECoG electrodes was 0.3. In addition, the high frequency band showed significant modulation by finger movement both temporally and spatially, and a classification accuracy of 73% (chance level: 20%) was achieved for individual finger movement using neural signals recorded from the micro-ECoG grid. These results suggest that the micro-ECoG grid presented here offers sufficient spatial and temporal resolution for the development of minimally-invasive brain-computer interface applications.

摘要

在本研究中,在个体手指运动期间使用定制的微电极脑电图(micro-ECoG)网格记录人类运动皮层活动。从三个不同角度在频域中对记录的神经信号质量进行了表征:(1)从不同电极记录的神经信号之间的相干性,(2)手指运动对神经信号的调制,以及(3)手指运动解码的准确性。结果发现,对于高频带(60 - 120赫兹),相邻微电极脑电图电极之间的相干性为0.3。此外,高频带在时间和空间上均显示出由手指运动引起的显著调制,并且使用从微电极脑电图网格记录的神经信号对个体手指运动实现了73%的分类准确率(机遇水平:20%)。这些结果表明,此处展示的微电极脑电图网格为微创脑机接口应用的开发提供了足够的空间和时间分辨率。

相似文献

1
Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:586-9. doi: 10.1109/IEMBS.2009.5333704.
2
Classification of multichannel ECoG related to individual finger movements with redundant spatial projections.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5424-7. doi: 10.1109/IEMBS.2011.6091341.
3
Long-term decoding stability of local field potentials from silicon arrays in primate motor cortex during a 2D center out task.
J Neural Eng. 2014 Jun;11(3):036009. doi: 10.1088/1741-2560/11/3/036009. Epub 2014 May 8.
6
Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex.
IEEE Trans Neural Syst Rehabil Eng. 2005 Dec;13(4):524-41. doi: 10.1109/TNSRE.2005.857687.
9
Decoding individual finger movements from one hand using human EEG signals.
PLoS One. 2014 Jan 8;9(1):e85192. doi: 10.1371/journal.pone.0085192. eCollection 2014.
10
Classification of Individual Finger Movements Using Intracortical Recordings in Human Motor Cortex.
Neurosurgery. 2020 Sep 15;87(4):630-638. doi: 10.1093/neuros/nyaa026.

引用本文的文献

1
Gesture encoding in human left precentral gyrus neuronal ensembles.
Commun Biol. 2025 Aug 30;8(1):1315. doi: 10.1038/s42003-025-08557-z.
2
Implanted cortical neuroprosthetics for speech and movement restoration.
J Neurol. 2024 Nov;271(11):7156-7168. doi: 10.1007/s00415-024-12604-w. Epub 2024 Oct 24.
3
High-resolution neural recordings improve the accuracy of speech decoding.
Nat Commun. 2023 Nov 6;14(1):6938. doi: 10.1038/s41467-023-42555-1.
4
A novel method for dynamically altering the surface area of intracranial EEG electrodes.
J Neural Eng. 2023 Mar 7;20(2):026002. doi: 10.1088/1741-2552/acb79f.
6
High-Density, Actively Multiplexed μECoG Array on Reinforced Silicone Substrate.
Front Nanotechnol. 2022;4. doi: 10.3389/fnano.2022.837328. Epub 2022 Feb 24.
7
Generalizable cursor click decoding using grasp-related neural transients.
J Neural Eng. 2021 Aug 31;18(4). doi: 10.1088/1741-2552/ac16b2.
8
Flexible, high-resolution thin-film electrodes for human and animal neural research.
J Neural Eng. 2021 Jun 17;18(4). doi: 10.1088/1741-2552/ac02dc.
10
Decoding Movement From Electrocorticographic Activity: A Review.
Front Neuroinform. 2019 Dec 3;13:74. doi: 10.3389/fninf.2019.00074. eCollection 2019.

本文引用的文献

1
Inherent bimanual postural synergies in hands.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5093-6. doi: 10.1109/IEMBS.2008.4650359.
2
Two-dimensional movement control using electrocorticographic signals in humans.
J Neural Eng. 2008 Mar;5(1):75-84. doi: 10.1088/1741-2560/5/1/008. Epub 2008 Feb 1.
3
Decoding individuated finger movements using volume-constrained neuronal ensembles in the M1 hand area.
IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):15-23. doi: 10.1109/TNSRE.2007.916269.
4
Decoding M1 neurons during multiple finger movements.
J Neurophysiol. 2007 Jul;98(1):327-33. doi: 10.1152/jn.00760.2006. Epub 2007 Apr 11.
5
Spectral changes in cortical surface potentials during motor movement.
J Neurosci. 2007 Feb 28;27(9):2424-32. doi: 10.1523/JNEUROSCI.3886-06.2007.
6
A brain-computer interface using electrocorticographic signals in humans.
J Neural Eng. 2004 Jun;1(2):63-71. doi: 10.1088/1741-2560/1/2/001. Epub 2004 Jun 14.
7
BCI2000: a general-purpose brain-computer interface (BCI) system.
IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43. doi: 10.1109/TBME.2004.827072.
8
Thresholding of statistical maps in functional neuroimaging using the false discovery rate.
Neuroimage. 2002 Apr;15(4):870-8. doi: 10.1006/nimg.2001.1037.
9
Effects of electrode properties on EEG measurements and a related inverse problem.
Med Eng Phys. 2000 Oct;22(8):535-45. doi: 10.1016/s1350-4533(00)00070-9.
10
Spatial filter selection for EEG-based communication.
Electroencephalogr Clin Neurophysiol. 1997 Sep;103(3):386-94. doi: 10.1016/s0013-4694(97)00022-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验