Suppr超能文献

一种用于动态改变颅内 EEG 电极表面积的新方法。

A novel method for dynamically altering the surface area of intracranial EEG electrodes.

机构信息

Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States of America.

Department of Statistics, Western Michigan University, Kalamazoo, MI, United States of America.

出版信息

J Neural Eng. 2023 Mar 7;20(2):026002. doi: 10.1088/1741-2552/acb79f.

Abstract

Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson's disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applications, the impact of electrode size on iEEG features and morphology is not well understood. Some insight has been gained from computer simulations, as well as experiments in which signals are recorded using electrodes of different sizes concurrently in different brain regions. Here, we introduce a novel method to record from electrodes of different sizes in the exact same location by changing the size of iEEG electrodes after implantation in the brain.We first present a theoretical model and anvalidation of the method. We then report the results of animplementation in three human subjects with refractory epilepsy. We recorded iEEG data from three different electrode sizes and compared the amplitudes, power spectra, inter-channel correlations, and signal-to-noise ratio (SNR) of interictal epileptiform discharges, i.e. epileptic spikes.We found that iEEG amplitude and power decreased as electrode size increased, while inter-channel correlation did not change significantly with electrode size. The SNR of epileptic spikes was generally highest in the smallest electrodes, but 39% of spikes had maximal SNR in larger electrodes. This likely depends on the precise location and spatial spread of each spike.Overall, this new method enables multi-scale measurements of electrical activity in the human brain that can facilitate our understanding of neurophysiology, treatment of neurological disease, and development of novel technologies.

摘要

颅内脑电图(iEEG)在治疗神经疾病(如癫痫和帕金森病)以及神经假体和脑机接口的开发中起着至关重要的作用。虽然这些应用中的电极几何形状差异很大,但电极尺寸对 iEEG 特征和形态的影响还不是很清楚。计算机模拟以及在不同脑区同时使用不同尺寸电极记录信号的实验已经提供了一些见解。在这里,我们介绍了一种新的方法,可以通过在大脑中植入后改变 iEEG 电极的尺寸,在完全相同的位置记录不同尺寸的电极。我们首先提出了一种理论模型并对该方法进行了验证。然后,我们报告了在三名难治性癫痫患者中实施的结果。我们记录了来自三种不同电极尺寸的 iEEG 数据,并比较了癫痫样放电(即癫痫棘波)的幅度、功率谱、通道间相关性和信噪比(SNR)。我们发现,随着电极尺寸的增加,iEEG 幅度和功率降低,而通道间相关性随电极尺寸变化不大。癫痫棘波的 SNR 通常在最小的电极中最高,但 39%的棘波在较大的电极中具有最大的 SNR。这可能取决于每个棘波的精确位置和空间分布。总的来说,这种新方法能够实现人类大脑中电活动的多尺度测量,有助于我们理解神经生理学、治疗神经疾病和开发新技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a54e/9990369/017517ba35c7/jneacb79ff1_lr.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验