Suppr超能文献

用于P300脑机接口系统的单试验独立成分分析

Single trial independent component analysis for P300 BCI system.

作者信息

Li Kun, Sankar Ravi, Arbel Yael, Donchin Emanuel

机构信息

Electrical Engineering Department, University of South Florida, Tampa, FL 33620-5350, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4035-8. doi: 10.1109/IEMBS.2009.5333745.

Abstract

A Brain Computer Interface (BCI) is a device that allows the user to communicate with the world without utilizing voluntary muscle activity (i.e., using only the electrical activity of the brain). It makes use of the well-studied observation that the brain reacts differently to different stimuli, as a function of the level of attention allotted to the stimulus stream and the specific processing triggered by the stimulus. In this article we present a single trial independent component analysis (ICA) method that is working with a BCI system proposed by Farwell and Donchin. It can dramatically reduce the signal processing time and improve the data communicating rate. This ICA method achieved 76.67% accuracy on single trial P300 response identification.

摘要

脑机接口(BCI)是一种允许用户在不利用自主肌肉活动(即仅使用大脑的电活动)的情况下与外界进行通信的设备。它利用了经过充分研究的观察结果,即大脑对不同刺激的反应不同,这取决于分配给刺激流的注意力水平以及刺激触发的特定处理过程。在本文中,我们提出了一种单试验独立成分分析(ICA)方法,该方法与法威尔和唐钦提出的BCI系统配合使用。它可以显著减少信号处理时间并提高数据通信速率。这种ICA方法在单试验P300反应识别上达到了76.67%的准确率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验