Suppr超能文献

儿童无害性斯蒂尔杂音的自动识别

Automated Identification of Innocent Still's Murmur in Children.

作者信息

Kang Sukryool, Doroshow Robin, McConnaughey James, Shekhar Raj

出版信息

IEEE Trans Biomed Eng. 2017 Jun;64(6):1326-1334. doi: 10.1109/TBME.2016.2603787. Epub 2016 Aug 26.

Abstract

OBJECTIVE

Still's murmur is the most common innocent heart murmur in children. It is also the most commonly misdiagnosed murmur, resulting in a high number of unnecessary referrals to pediatric cardiologist. The purpose of this study was to develop a computer algorithm for automated identification of Still's murmur that may help reduce unnecessary referrals.

METHODS

We first developed an accurate segmentation algorithm to locate the first and the second heart sounds. Once these sounds were identified, we extracted signal features specific to Still's murmur. Subsequently, machine learning-based classifiers, artificial neural network and support vector machine, were used to identify Still's murmur.

RESULTS

We evaluated our classifiers using the jackknife method using 87 Still's murmurs and 170 non-Still's murmurs. Our algorithm identified Still's murmur accurately with 84-93% sensitivity and 91-99% specificity.

CONCLUSION

We have achieved accurate automated identification of Still's murmur while minimizing false positives. The performance of our algorithm is comparable to the rate of murmur identification by auscultation by pediatric cardiologists.

SIGNIFICANCE

To our knowledge, our solution is the first murmur classifier that focuses singularly on Still's murmur. Following further refinement and testing, the presented algorithm could reduce the number of children with Still's murmur referred unnecessarily to pediatric cardiologists.

摘要

目的

史戴氏杂音是儿童中最常见的无害性心脏杂音。它也是最常被误诊的杂音,导致大量不必要地转诊至儿科心脏病专家处。本研究的目的是开发一种计算机算法,用于自动识别史戴氏杂音,这可能有助于减少不必要的转诊。

方法

我们首先开发了一种精确的分割算法来定位第一心音和第二心音。一旦识别出这些声音,我们提取了史戴氏杂音特有的信号特征。随后,使用基于机器学习的分类器,即人工神经网络和支持向量机,来识别史戴氏杂音。

结果

我们使用留一法对87例史戴氏杂音和170例非史戴氏杂音评估了我们的分类器。我们的算法准确识别史戴氏杂音的灵敏度为84 - 93%,特异性为91 - 99%。

结论

我们在将误报最小化的同时实现了对史戴氏杂音的准确自动识别。我们算法的性能与儿科心脏病专家通过听诊识别杂音的比率相当。

意义

据我们所知,我们的解决方案是首个专门针对史戴氏杂音的杂音分类器。经过进一步完善和测试,所提出的算法可以减少不必要地转诊至儿科心脏病专家处的患有史戴氏杂音的儿童数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验