Sawin K E, Mitchison T J
Department of Biochemistry, University of California, San Francisco 94143.
J Cell Biol. 1991 Mar;112(5):941-54. doi: 10.1083/jcb.112.5.941.
In the preceding paper we described pathways of mitotic spindle assembly in cell-free extracts prepared from eggs of Xenopus laevis. Here we demonstrate the poleward flux of microtubules in spindles assembled in vitro, using a photoactivatable fluorescein covalently coupled to tubulin and multi-channel fluorescence videomicroscopy. After local photoactivation of fluorescence by UV microbeam, we observed poleward movement of fluorescein-marked microtubules at a rate of 3 microns/min, similar to rates of chromosome movement and spindle elongation during prometaphase and anaphase. This movement could be blocked by the addition of millimolar AMP-PNP but was not affected by concentrations of vanadate up to 150 microM, suggesting that poleward flux may be driven by a microtubule motor similar to kinesin. In contrast to previous results obtained in vivo (Mitchison, T. J. 1989. J. Cell Biol. 109:637-652), poleward flux in vitro appears to occur independently of kinetochores or kinetochore microtubules, and therefore may be a general property of relatively stable microtubules within the spindle. We find that microtubules moving towards poles are dynamic structures, and we have estimated the average half-life of fluxing microtubules in vitro to be between approximately 75 and 100 s. We discuss these results with regard to the function of poleward flux in spindle movements in anaphase and prometaphase.
在前一篇论文中,我们描述了从非洲爪蟾卵制备的无细胞提取物中有丝分裂纺锤体组装的途径。在此,我们利用与微管蛋白共价偶联的光活化荧光素和多通道荧光视频显微镜,证明了体外组装的纺锤体中微管的极向流。在用紫外微束对荧光进行局部光活化后,我们观察到荧光标记的微管以3微米/分钟的速度向极移动,这与前中期和后期染色体移动及纺锤体伸长的速度相似。这种移动可被加入毫摩尔浓度的AMP-PNP阻断,但不受高达150微摩尔浓度的钒酸盐影响,这表明极向流可能由类似于驱动蛋白的微管马达驱动。与先前在体内获得的结果(米奇森,T. J. 1989.《细胞生物学杂志》109:637 - 652)相反,体外的极向流似乎独立于动粒或动粒微管而发生,因此可能是纺锤体内相对稳定的微管的一个普遍特性。我们发现向极移动的微管是动态结构,并且我们估计体外流动微管的平均半衰期约在75至100秒之间。我们讨论了这些结果与极向流在后期和前中期纺锤体运动中的功能的关系。