Danish Cancer Society Research Center (DCRC), Copenhagen, Denmark.
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
EMBO J. 2020 Dec 1;39(23):e105432. doi: 10.15252/embj.2020105432. Epub 2020 Oct 19.
Mitotic spindle microtubules (MTs) undergo continuous poleward flux, whose driving force and function in humans remain unclear. Here, we combined loss-of-function screenings with analysis of MT-dynamics in human cells to investigate the molecular mechanisms underlying MT-flux. We report that kinesin-7/CENP-E at kinetochores (KTs) is the predominant driver of MT-flux in early prometaphase, while kinesin-4/KIF4A on chromosome arms facilitates MT-flux during late prometaphase and metaphase. Both these activities work in coordination with kinesin-5/EG5 and kinesin-12/KIF15, and our data suggest that the MT-flux driving force is transmitted from non-KT-MTs to KT-MTs by the MT couplers HSET and NuMA. Additionally, we found that the MT-flux rate correlates with spindle length, and this correlation depends on the establishment of stable end-on KT-MT attachments. Strikingly, we find that MT-flux is required to regulate spindle length by counteracting kinesin 13/MCAK-dependent MT-depolymerization. Thus, our study unveils the long-sought mechanism of MT-flux in human cells as relying on the coordinated action of four kinesins to compensate for MT-depolymerization and regulate spindle length.
有丝分裂纺锤体微管(MTs)经历持续的向极流动,但其在人类中的驱动力和功能仍不清楚。在这里,我们结合功能丧失筛选和人细胞中 MT 动力学分析,研究了 MT 流动的分子机制。我们报告说,动粒处的驱动蛋白-7/CENP-E(KTs)是早期前中期 MT 流动的主要驱动蛋白,而染色体臂上的驱动蛋白-4/KIF4A 则在后期前中期和中期促进 MT 流动。这两种活性都与驱动蛋白-5/EG5 和驱动蛋白-12/KIF15 协调工作,我们的数据表明,MT 流动驱动力通过 MT 偶联蛋白 HSET 和 NuMA 从非 KT-MTs 传递到 KT-MTs。此外,我们发现 MT 流动速度与纺锤体长度相关,这种相关性取决于稳定的端对端 KT-MT 附着的建立。引人注目的是,我们发现 MT 流动对于调节纺锤体长度是必需的,它通过拮抗驱动蛋白 13/MCAK 依赖性 MT 解聚来发挥作用。因此,我们的研究揭示了人类细胞中 MT 流动的长期寻求的机制,即依赖于四种驱动蛋白的协调作用来补偿 MT 解聚并调节纺锤体长度。