Suppr超能文献

用于药学干预的实时风险工具。

Real-Time Risk Tool for Pharmacy Interventions.

作者信息

Nguyen Hanh L, Alvarez Kristin S, Manz Boryana, Nethi Arun, Sharma Varun, Sundaram Venkatraghavan, Julka Manjula

机构信息

Parkland Health and Hospital System, Dallas, TX, USA.

Parkland Center for Clinical Innovation, Dallas, TX, USA.

出版信息

Hosp Pharm. 2022 Feb;57(1):52-60. doi: 10.1177/0018578720973884. Epub 2020 Nov 25.

Abstract

BACKGROUND

Adverse drug events (ADEs) result in excess hospitalizations. Thorough admission medication histories (AMHs) may prevent ADEs; however, the resources required oftentimes outweigh what is available in large hospital settings. Previous risk prediction models embedded into the Electronic Medical Record (EMR) have been used at hospitals to aid in targeting delivery of scarce resources.

OBJECTIVE

To determine if an AMH scoring tool used to allocate resources can decrease 30-day hospital readmissions.

DESIGN SETTING AND PARTICIPANTS

Propensity-matched cohort study, Medicine/Surgery patients in large academic safety-net hospital.

INTERVENTION OR EXPOSURE

Pharmacy-conducted AMHs identified by risk model versus standard of care AMH.

MAIN OUTCOMES AND MEASURES

A total of 30-day hospital readmissions and inpatient ADE prevention.

RESULTS

The model screened 87 240 hospitalizations between June 2017 and June 2019 and 4027 patients per group were included. There were significantly less 30 day readmissions among high-risk identified patients that received a pharmacy-conducted AMH compared to controls (11% vs 15%;  = 0.004) and no significant difference in readmission rates for low-risk patients. While there was significantly higher documentation of major ADE prevention in the pharmacy-led AMH group versus control (1656 vs 12;  < 0.001), there was no difference in electronically-detected inpatient ADEs between groups.

CONCLUSIONS

A risk tool embedded into the EMR can be used to identify patients whom pharmacy teams can easily target for AMHs. This study showed significant reductions in readmissions for patients identified as high-risk. However, the same benefit in readmissions was not seen in those identified at low-risk, which supports allocating resources to those that will benefit the most.

摘要

背景

药物不良事件(ADEs)导致住院人数过多。全面的入院用药史(AMHs)可能预防ADEs;然而,所需资源往往超过大型医院环境中的可用资源。以前嵌入电子病历(EMR)的风险预测模型已在医院中用于帮助确定稀缺资源的分配目标。

目的

确定用于分配资源的AMH评分工具是否可以降低30天内的医院再入院率。

设计、设置和参与者:倾向匹配队列研究,大型学术安全网医院的内科/外科患者。

干预或暴露

通过风险模型识别的药房进行的AMHs与护理标准AMH。

主要结局和测量指标

总共30天的医院再入院率和住院期间ADE的预防情况。

结果

该模型在2017年6月至2019年6月期间筛选了87240例住院病例,每组纳入4027例患者。与对照组相比,接受药房进行的AMH的高危识别患者的30天再入院率显著降低(11%对15%;P = 0.004),低危患者的再入院率无显著差异。虽然药房主导的AMH组与对照组相比,主要ADE预防的记录显著更高(1656对12;P < 0.001),但两组之间电子检测到的住院ADEs没有差异。

结论

嵌入EMR的风险工具可用于识别药房团队可以轻松针对其进行AMHs的患者。这项研究表明,被确定为高危的患者的再入院率显著降低。然而,在被确定为低危的患者中没有看到相同的再入院益处,这支持将资源分配给最受益的患者。

相似文献

1
Real-Time Risk Tool for Pharmacy Interventions.用于药学干预的实时风险工具。
Hosp Pharm. 2022 Feb;57(1):52-60. doi: 10.1177/0018578720973884. Epub 2020 Nov 25.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验